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Abstract

Non–Gaussian information in Cosmology with Weak

Gravitational Lensing

Andrea Petri

The Standard Model of cosmology successfully describes the observable Universe requir-

ing only a small number of free parameters. The model has been validated by a wide range

of observable probes such as Supernovae IA, the CMB, Baryonic Acoustic Oscillations and

galaxy clusters. Weak Gravitational Lensing (WL) is becoming a popular observational

technique to constrain parameters in the Standard Model and is particularly appealing to

the scientific community because the tracers it relies on, image distortions, are unbiased

probes of density fluctuations in the fabric of the cosmos. The WL effect is sensitive to

the late time evolution of the Universe, in which structures are non–linear. Because of this,

WL observations cannot be treated as Gaussian random fields and statistical information on

cosmology leaks from quadratic correlations into more complicated, higher order, image

features. The goal of this dissertation is to analyze the efficiency of some of these higher

order features in constraining Standard Model parameters. We approach the investigation



from a practical point of view, examining the analytical, computational and numerical ac-

curacy issues that are involved in carrying a complete analysis from observational data to

parameter constraints using these higher order statistics. This work is organized as follows:

• In Chapter 1 we review the fundamentals of the ΛCDM Standard Model of cosmol-

ogy, focusing particularly on the Friedmann picture and on the physics of large scale

density fluctuations.

• In Chapter 2 we give an outline of the Gravitational Lensing effect in the context of

cosmology, and we introduce the basic WL observables from an analytical point of

view.

• In Chapter 3 we review the relevant numerical techniques used in the modeling of WL

observables, focusing in particular on the algorithms used in ray–tracing simulations.

These simulations constitute the base of our modeling efforts.

• In Chapter 4 we discuss feature extraction techniques from WL observations: we

treat both quadratic statistics, such as the angular shear–shear power spectrum, and

higher order statistics for which analytical treatment is not possible.

• In Chapter 5 we review the Bayesian formalism behind the inference of ΛCDM pa-

rameters from image features. We place particular emphasis on physical and numer-

ical effects that degrade parameter constraints and discuss possible mitigations.

• In Chapter 6 we apply the previously described techniques to the Canada France

Hawaii LenS galaxy survey, showing how the use of higher order image statistics

can improve inferences on the ΛCDM parameters that describe density fluctuations.



• In Chapter 7 we discuss some of the issues that arise in the analysis of a large scale

WL survey such as the Large Scale Synoptic Survey: we focus on systematic effects

caused by sensors imperfections, the atmosphere, redshift errors and approximate

theoretical modeling.

• In Chapter 8 we draw our conclusions and discuss possible future developments.
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Chapter 1

The ΛCDM cosmological model

In this Chapter we discuss the main features of the Standard Model of cosmology. We first

approximate the Universe as a homogeneous and isotropic system, following the guide-

lines of the Friedmann model [1]. We then study the physics of the large scale density

fluctuations that are present on top of the uniform background. We list and define the free

parameters in the Standard Model.

1.1 The Friedmann-Robertson-Walker model

In the course of this work, we assume the Universe to be described by a flat Friedmann-

Robertson-Walker (FRW) model with time dependent scale factor a(t) and Hubble pa-

rameter H(t) = ȧ(t)/a(t). We introduce comoving spatial coordinates x, centered on an

Earth–based observer, and we define a spacetime 4–vector dxµ = (cdt, dx). We can define

a 4–momentum associated with the xµ coordinates as P µ = dxµ/ds, with ds = cdτ (this

definition states that τ can be identified as proper time for massive particles. For the case

of photons we identify τ as a geodesic line parameter). Assuming an homogeneous and

1



CHAPTER 1. THE ΛCDM COSMOLOGICAL MODEL

isotropic Universe, the line element can be written as

ds2 = gµνdx
µdxν = −c2dt2 + a(t)2dx2 (1.1.1)

We introduced the diagonal metric tensor gµν , defined as

gµν(x, t) =



−1 0 0 0

0 a(t)2 0 0

0 0 a(t)2 0

0 0 0 a(t)2


(1.1.2)

In the remainder of the Chapter we will use the notation g ≡ −|g| and we will use the

metric to raise and lower indexes, i.e. we define Vµ = gµνV
ν for a generic 4–vector V µ.

We also define gµν = (g−1)µν . The contents of the FRW universe are assumed to be perfect

fluids, described by spatially uniform mass densities ρ(i) and pressures P(i). We consider

the reference frame of a fundamental observer, in which the stress–energy tensor for species

i assumes the form

T µν(i) =
(
ρ(i)c

2 + P(i)

)
UµUν + P(i)g

µν (1.1.3)

Here Uµ is the 4–velocity of a fluid element centered at xµ. Note that, for a fundamental

observer, in absence of perturbations the fluid elements 4–velocity must be consistent with

the homogeneity assumption

Uµ = (1, 0, 0, 0) (1.1.4)

Note also that the stress–energy tensor must obey the covariant conservation law

2



1.1. THE FRIEDMANN-ROBERTSON-WALKER MODEL

∇µT µν(i) = ∂µT µν(i) + ΓµµαT αν(i) + ΓνµαT
µα

(i) = 0 (1.1.5)

The only non zero components of the affine connection Γ for the FRW metric (1.1.1) are

Γij0 = Γ0
ija

2 =
H

c
δij (1.1.6)

Combining (1.1.6) with (1.1.3), the 0–th component of the conservation condition (1.1.5)

reads

ρ̇(i) + 3H
(
ρ(i) + P(i)/c

2
)

= 0 (1.1.7)

The metric gµν has to satisfy Einstein equation with source terms Tµν

Rµν − 1

2
Rgµν =

8πG

c4

∑
i

T µν(i) (1.1.8)

In (1.1.8) we indicated the Ricci tensor as Rµν and the Ricci scalar as R = gµνRµν . It

can be shown (see for example [2]) that the components of the Ricci tensor for the metric

(1.1.1) are

R00 = − 3ä

ac2
; Rij =

(
aä+ 2a2H2

c2

)
δij ; R =

6

c2

(
ä

a
+H2

)
(1.1.9)

With the symmetries in the metric (1.1.1), the Einstein equations (1.1.8) have two indepen-

dent components, which take the name of Friedmann equations

3



CHAPTER 1. THE ΛCDM COSMOLOGICAL MODEL

H2 =
8πG

3

∑
i

ρ(i) (1.1.10)

ä

a
= −4πG

3

∑
i

(
ρ(i) +

3P(i)

c2

)
(1.1.11)

Once relations between the components pressures and densities are specified, the conserva-

tion equation (1.1.7) and the Friedmann equations (1.1.10), (1.1.11) can be solved explicitly

to obtain the time dependencies of a, ρ(i),P(i). Later in the Chapter, we will derive these

solutions explicitly for the cases relevant to this work.

1.1.1 Distance-redshift relation

In this section we summarize the basics of the cosmological redshift effect, which is a

direct consequence of the FRW geometry. Consider a source (for example a galaxy) at a

comoving distance χs from the observer on Earth, which emits light at a frequency νs. Due

to the expansion of the Universe, which is described by the scale factor a, the wavelength

of the light gets stretched as photons travel from the source to the observer. Indicating the

observed frequency on Earth as ν0, we can define a redshift parameter associated with the

source

zs =
νs
ν0

− 1 (1.1.12)

It can be shown that there is a one–to–one correspondence between redshift and scale factor,

defined by

zs =
1

a(ts)
− 1 (1.1.13)

4



1.1. THE FRIEDMANN-ROBERTSON-WALKER MODEL

where ts is the emission time of a photon that reaches Earth at the present time t0, for which

we assumed a(t0) = 1. The FRW metric (1.1.1) establishes correspondences between the

source redshift zs, the photon emission time ts and the source distance χs. Using the fact

that ds2 = 0 along a photon spacetime trajectory, we can write

χs = −c
∫ ts

t0

dt

a
= −c

∫ a(ts)

a(t0)

da

a2H
(1.1.14)

ts =

∫ χs

0

adχ

c
= −

∫ a(ts)

a(t0)

da

aH
(1.1.15)

Note that, using (1.1.13), the relations (1.1.14), (1.1.15) can be rewritten as

χs = c

∫ zs

0

dz

H(z)
(1.1.16)

ts =

∫ zs

0

dz

(1 + z)H(z)
(1.1.17)

In practical observations, source redshifts zs are measured using photometric [3] or spec-

troscopic [4] techniques and χs, ts are then inferred from equations (1.1.16), (1.1.17) with

the help of Friedmann equation (1.1.10), which sets the time dependence of the Hubble

parameter H . The late universe (z � 3000) is well described in terms of two components,

namely cold matter and Dark Energy (hence the ΛCDM denomination), which effects we

explore in the next sections.

1.1.2 Cold Dark Matter

In this work we model Dark Matter at late times as a non–relativistic species of particles

with mass m. When the equilibrium temperature T is much smaller than mc2/kB, we can

5



CHAPTER 1. THE ΛCDM COSMOLOGICAL MODEL

neglect the pressure term in (1.1.7) and obtain a scaling relation for the dark matter mass

density ρm with a

ρm(a) = ρm(a0)

(
a(t0)

a

)3

= ρm(a0)(1 + z)3 (1.1.18)

Substituting (1.1.18) in the Friedmann equation (1.1.10) we can get the time dependence

of a for a pure Dark Matter Universe

a(t) = a(t0)

(
t

t0

)2/3

(1.1.19)

1.1.3 Dark energy

The existence of Dark Energy was postulated after observational evidence of the acceler-

ated expansion of the Universe. Suppose that Dark Energy is described by a perfect fluid

with density ρΛ and pressure PΛ which are related by

PΛ = wρΛc
2 (1.1.20)

w takes the name of Dark Energy equation of state. Looking at equation (1.1.11), we note

that a necessary condition for Dark Energy to cause ä > 0 is w < −1/3. Because of the

challenges posed by modeling a fluid with negative w from first principles, Dark Energy is

usually described by a phenomenological, a dependent, equation of state in the form

w(a) = w0 + wa(1− a) (1.1.21)

6



1.2. MATTER DENSITY PERTURBATIONS

with w0, wa constant [5]. With the assumption (1.1.21), the conservation equation (1.1.7)

can be solved for the scale dependency of ρΛ

ρΛ(a) = ρΛ(a0)
(a0

a

)3(1+w0+wa)

e3wa(a−a(t0)) (1.1.22)

We can consider a few limit cases of (1.1.22). For w0 = −1, wa = 0 the Dark Energy

density ρΛ does not depend on a and behaves as a cosmological constant. If w0 = −1 and

wa 6= 0, on the other hand, there is a non–trivial scaling of ρΛ with a. In order for this

scaling relation to reproduce the observational fact that ρΛ is negligible at recombination

time (z ∼ 1100), wa must be negative or zero. Figure 1.1 shows the alteration of the

distance–redshift relation (1.1.16) due to the presence of Dark Energy. Using Supernovae

IA as standard candles, [6] have measured the χ(z) relation with sufficient precision to

establish Dark Energy as the dominant component in the present Universe, earning the

Nobel Prize in 2011.

1.2 Matter density perturbations

In this section we study the deviations from the homogeneous FRW Universe and describe

how scalar density perturbations evolve under the effect of gravity. This will be particularly

relevant when studying the Gravitational Lensing (GL) effect in the next Chapter, as light

ray geodesics deviate from straight lines in the presence of density inhomogeneities. These

geodesic deflections have a tangible effect in observations of distant sources, as observed

galaxy shapes show apparent distortions that trace the metric perturbations. We review the

basic model that describes density perturbations of collision–free Cold Dark Matter in an

expanding Universe. Scalar perturbations to the FRW metric (1.1.1) can be parametrized

7
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Figure 1.1: Distance–redshift relation for two different Universe models, with and without
Dark Energy

in the conformal Newtonian gauge [7] by two scalar potentials Φ,Ψ in the time–time and

space–space components of the metric as

ds2 = −c2dt2(1 + 2Ψ(x, t)) + a(t)2dx2(1 + 2Φ(x, t)) (1.2.1)

For the scope of the present work we can safely ignore vector and tensor perturbations

to the FRW metric as their effects are negligible in WL observations. The phase space

distribution of Dark Matter is described in terms of a distribution function fm(xµ,P). In

this description, fm(xµ,P)gd3xd3P is the number of particles contained in a phase space

volume d3xd3P . We used the notations P µ = (P 0,P), d3P = dP xdP ydP z. Note that the

momentum dependence of fm can be expressed in terms of P only, since the Dark Matter

4–momentum has to satisfy the constraint

8



1.2. MATTER DENSITY PERTURBATIONS

gµνP
µP ν = −1 (1.2.2)

Because the phase space volume element gd3xd3P is invariant under coordinate transfor-

mations, fm too must be invariant for the number of particles to be conserved. If we assume

fm to describe a Dark Matter fluid in local equilibrium, we know that fm depends on the

invariant energy e only. Following [8], e is defined defined by

e = gµνP
µUν (1.2.3)

The fluid bulk 4–velocity Uµ = (U0,U) obeys the usual constraint UµUµ = −1. We can

relate the distribution function to the Dark Matter 4–velocity and stress–energy tensor [8]

as

∫
d3P

P0

√
gP µfm = ρmU

µ (1.2.4)

∫
d3P

P0

√
gP µP νfm = T µν (1.2.5)

where, for notational simplicity, we set T ≡ Tm. Note that equations (1.1.3) and (1.2.5)

can be manipulated to obtain expressions for the matter density and pressure in terms of fm

ρm =

∫
d3P

P0

√
ge2fm (1.2.6)

Pm =
1

3

∫
d3P

P0

√
g(e2 − 1)fm (1.2.7)

Using expression (1.2.7), it is easy to show that Pm = O(U2) and that the pressure term

can be neglected in the non–relativistic limit, as expected. We parametrize the Dark Matter

9



CHAPTER 1. THE ΛCDM COSMOLOGICAL MODEL

density as

ρm(x, t) = ρ̄m(t)(1 + δ(x, t)) (1.2.8)

where ρ̄m(t) is the spatially averaged density and δ(x, t) is the spatially dependent density

contrast. In the next sub–section, we will use the Boltzmann equation for fm to relate the

evolution of δ and U in the non–relativistic limit.

1.2.1 Collision–free Boltzmann equation

In the absence of collisions between Dark Matter particles, the phase space volume is pre-

served in the system evolution, and the distribution function satisfies the source–free Boltz-

mann equation

dfm(xµ,P)

ds
= P µ∂fm(xµ,P)

∂xµ
+
dP i

ds

∂fm(xµ,P)

∂P i
= 0 (1.2.9)

The 4–momentum variation rate dP i/ds can be calculated from the equations of motion,

i.e. the geodesic equations for the metric (1.2.1)

dP µ

ds
= −ΓµαβP

αP β (1.2.10)

The collision–free Boltzmann equation (1.2.9) then becomes

P 0∂0fm + P i∂ifm −
∂fm
∂P i

(
P 0P 0Γi00 + 2Γi0jP

0P j + ΓijkP
jP k
)

= 0 (1.2.11)

10



1.2. MATTER DENSITY PERTURBATIONS

Equations for ρm, Uµ can be obtained from the P–moments of the Boltzmann equation

(1.2.11). We can integrate (1.2.11) in d3P directly, or we can multiply it by P j and then

integrate. To perform the calculations, we make use of the expressions

∫
d3PP µfm =

T µ0√
g

(1.2.12)

∫
d3PP 0P i∂fm

∂P j
=
T ij − δijT 0

0√
g

(1.2.13)

∫
d3PP 0P 0∂fm

∂P i
=

2ρmUi√
g

(1.2.14)

∫
d3PP iP jfm = O(U2) (1.2.15)

∫
d3PP 0P ifm =

ρmU
i

√
g

+O(U2) (1.2.16)

∫
d3PP iP j ∂fm

∂P k
= −δkiU

j + δkjU
i

√
g

+O(U2) (1.2.17)

∫
d3PP 0P iP j ∂fm

∂P k
= −δkiU

j + δkjU
i

√
g

+O(U2) (1.2.18)

∫
d3PP 0P 0P i∂fm

∂P j
= −ρmδij√

g
+O(U2) (1.2.19)

In addition to the above results, we use the approximate expressions for the stress–energy

tensor

T 0
0 = −ρm +O(U2) ; T i0 = −(1 + 2Ψ)ρmU

i +O(U2) ; T ij = O(U2) (1.2.20)

11
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We can now perform an integration of equation (1.2.11) in d3P , taking the non–relativistic

limit to discard all O(U2) terms. We obtain

ρ̇m
c

+∇ · [(1 + 2Ψ)ρmU]− ρm[∂t log
√
g+ 2(UiΓ

i
00− 2Γi0i) + (1 + 2Ψ)U i(Γjij + Γijj)] = 0

(1.2.21)

We can also multiply (1.2.11) by P j and integrate, taking again the non–relativistic limit.

The integration yields

∂t(ρmU
j)− ρm(U j∂t log

√
g − cΓj00 − 8cΓj0iU

i) = 0 (1.2.22)

Although the system of equations (1.2.21) and (1.2.22) can be closed with the help of the

Einstein equation (1.1.8), its exact solution is complicated to calculate because of the non–

linearity of the system, and usually involves numerical methods [9] or heuristics based on

the halo model [10]. In the limit in which the perturbations are still at linear stage, i.e. when

the density contrast δ is small, we can trust the linearized version of (1.2.21), (1.2.22). We

make use of the linear expression for the affine connection Γ

Γ0
00 = Ψ̇/c ; Γ0

0i = Γ0
i0 = ∂iΨ

Γ0
ij = [H + 2H(Φ−Ψ) + Φ̇]a2δij/c ; Γi00 = ∂iΨ/a

2

Γij0 = Γi0j = (H + Φ̇)δij/c ; Γijk = (δij∂k + δik∂j − δjk∂i)Φ

(1.2.23)

which, when plugged in (1.2.21), (1.2.22) leads to

δ̇ + c∇ ·U + 3Φ̇− Ψ̇ = 0 (1.2.24)

12



1.2. MATTER DENSITY PERTURBATIONS

∂t(ρ̄mU) + 5Hρ̄mU +
c∇Ψ

a2
= 0 (1.2.25)

In this derivation we used the fact that, in the non–relativistic limit, ∂tρ̄m+3Hρ̄m = 0 (this

relation can also be deducted from theO(1) terms in equation (1.2.21)). We observe that, if

one ignores the Φ,Ψ terms in (1.2.24), this relation is a continuity equation which describes

mass conservation. In this fashion, v = cU can be identified as the peculiar velocity ẋ of a

fluid element, on top of the Universe expansion.

1.2.2 Einstein equation

The system composed by the linear equations for δ and U (1.2.24), (1.2.25) can be closed

with the Einstein equation, which relates the potentials Φ,Ψ to the components of the

stress–energy tensor. Since we limit our study to scalar perturbations, there are only two

independent components of the Einstein equation that need to be considered. WL physics

is dominated by the late time behavior of density perturbations, and hence we can ignore

relativistic particles and focus on cold matter only. Under this assumption, the 00, 0i and

ij components of the linearized Einstein equation (1.1.8) become respectively (see [11])

∇2Φ +
3a2

c2
(H2Ψ−HΦ̇) = −4πGa2ρ̄mδ

c2
(1.2.26)

∇(Φ̇−HΨ) =
4πGa2ρ̄mv

c2
(1.2.27)

∇2(Φ + Ψ) = 0 (1.2.28)

13



CHAPTER 1. THE ΛCDM COSMOLOGICAL MODEL

A few considerations are in order here. First of all, the terms in (1.2.26) which contain

powers of aH are sub–dominant for the WL case of interest, as the laplacian term is domi-

nant for modes with wavenumber k well inside the Hubble horizon kc� aH (see [12] for

a discussion of higher order Post Newtonian terms). We can hence drop these terms from

(1.2.26), which then reduces to a Poisson–like equation

∇2Φ(x, t) = −4πGa(t)2

c2
ρ̄m(t)δ(x, t). (1.2.29)

Equation (1.2.28) comes from the traceless part of the spatial Einstein equation and its

source term corresponds to anisotropic stresses in the matter components. Because such

stresses are proportional to the momentum quadrupole of the their phase space distribu-

tions, which is negligible in the non–relativistic limit, anisotropic stresses can be safely

neglected when studying WL. We will then use (1.2.28) to conclude Ψ = −Φ, since we

assume no singularities in the spatial profiles of Ψ,Φ.

1.2.3 Linear growth factor

The Poisson equation (1.2.29) leads to an equation for the density contrast which is linear

in δ. We combine the time derivative of (1.2.24) with the divergence of (1.2.25) and we

ignore terms proportional to Ψ̇, Φ̇ (which give rise to PN corrections). After a few algebraic

manipulations we get

δ̈ + 2Hδ̇ − 4πGρ̄mδ = 0 (1.2.30)

Because of the linearity of equations (1.2.24) and (1.2.25), each Fourier mode δ̃(k, t)

evolves independently in time. Moreover, in absence of pressure terms (which would con-

14



1.3. ΛCDM COSMOLOGICAL PARAMETERS

tribute with terms proportional to ∇2δ), the density contrast δ evolves in a self–similar

fashion

δ̃(k, t) = D(t)δ̃(k, 0) (1.2.31)

with the linear growth factor D that does not depend on the wavenumber k. Equation

(1.2.30) can be converted in a relation for the linear growth factor D with the use of the

time–redshift relation (1.1.17) and the Friedmann equations (1.1.10), (1.1.11). After a few

algebraic manipulations we obtain

d2D(z)

dz2
+

4πG

3

(
ρ̄m(z) + ρΛ(z)[1 + 3w(z)]

(1 + z)H(z)2

)
dD(z)

dz
− 8πGΩm(z)

H(z)2(1 + z)2
D(z) = 0

(1.2.32)

In the limiting case of a pure Dark Matter universe (ρΛ = 0), (1.2.32) reduces to

d2D(z)

dz2
+

1

2(1 + z)

dD(z)

dz
− 3D(z)

(1 + z)2
= 0 (1.2.33)

which admits a solution D(z) ∝ (1 + z)−1 = a. Figure 1.2 shows the evolution of the

linear growth factor D with redshift for different combinations of the ΛCDM parameters.

1.3 ΛCDM cosmological parameters

One of the main goals of the research presented in this work is to study how WL ob-

servations can be used to constrain some of the free parameters that describe the ΛCDM

universe. In the conclusion of this Chapter we present a parametrization which will be

consistently used throughout the dissertation writeup. The present day Hubble parameter
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Figure 1.2: Linear growth factor D(z) calculated solving (1.2.32) for 4 different ΛCDM
cosmologies. The initial condition has been set for a unit density perturbation at z = 1000,
namely D(1000) = 1, Ḋ(1000) = 0. Observe the fact that the growth of perturbations is
suppressed by the presence of Dark Energy, which accelerates the expansion of the Uni-
verse and makes it harder for over–densities to grow.
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1.3. ΛCDM COSMOLOGICAL PARAMETERS

H0 ≡ H(t0) is expressed in terms of the dimensionless number h as

H0 = 100h km s−1 Mpc−1 (1.3.1)

The densities of the components that source the Einstein equation are usually quoted in the

literature in terms of their ratios with the present critical density ρc = 3H2
0/8πG. We use

the notation

Ωi =
8πGρi(t0)

3H2
0

(1.3.2)

In addition to Dark Matter and Dark Energy, the present universe contains a significant frac-

tion of baryons (Ωb ≈ Ωm/6), whose physics is more complicated to model with respect to

the one that controls cold matter, as the Boltzmann equation for baryons contains pressure

terms and collisional terms. In this work we ignore baryon physics, although its investi-

gation in cosmology and WL is currently an active area of research. The initial conditions

for the density inhomogeneities described in § 1.2 are believed to be set at early times by

quantum perturbations, which are present during an epoch of accelerated expansion called

inflation ([13]). Inflation is believed to generate Gaussian random initial conditions, which

are statistically isotropic and nearly scale invariant

〈δ̃(k, zin)δ̃∗(k′, zin)〉 = (2π)3Pδ(k, zin)δD(k− k′) (1.3.3)

Pδ(k, zin) =
A2
s

k3

(
k

k0

)ns−1

(1.3.4)

In this notation, ns = d log(k3Pδ)/d log k is a parameter that describes the deviation from

scale invariance (ns = 1 corresponds to scale invariant initial conditions). The overall

17



CHAPTER 1. THE ΛCDM COSMOLOGICAL MODEL

normalization of the initial density perturbations As is usually expressed in terms of an

equivalent parameter, σ8, defined as

σ8 =

∫
d3k

(2π)3
P lin
δ (k, z = 0)

∣∣∣W̃TH(kr8)
∣∣∣2 (1.3.5)

The meaning if the notation in equation (1.3.5) is that P lin
δ is obtained from δ̃(k, z = 0)

calculated with the linear evolution equation (1.2.30). σ8 is defined as the spatial variance

of the present linearly evolved density contrast smoothed with a top hat window of size

r8 = 8 Mpc/h. In equation (1.3.5), W̃TH is the Fourier Transform of the real space top hat

window

WTH(x) =
3

4π
Θ(1− |x|) (1.3.6)

The randomness of the initial conditions, which is a consequence of the quantum mechan-

ical nature of inflation, is at the base of a phenomenon called cosmic variance, which

states that cosmological observable quantities are essentially random variables. As a con-

sequence, ΛCDM parameter inferences from observations have to be related to the statis-

tical properties of the observables (i.e. ensemble averages), rather than to the observables

themselves. Table 1.1 shows a list of cosmological parameters measured from the Planck

experiment [14], as well as the fiducial values used throughout this work. The Dark Energy

equation of state parametersw0, wa are essentially left unconstrained by CMB experiments,

as they are sensitive to early Universe physics in which the Dark Energy density is negligi-

ble. WL observations, on the other hand, trace density fluctuations at late times, when the

effects of Dark Energy are tangible. In the next Chapter, we will review the Gravitational

Lensing effect and show how it can be used as a tracer for Dark Matter density fluctuations.
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1.3. ΛCDM COSMOLOGICAL PARAMETERS

Parameter Planck 2015 Fiducial
h 0.6731± 0.0096 0.72

Ωm 0.315± 0.013 0.26
ΩΛ 0.685± 0.013 0.74
Ωb 0.0490± 0.0019 0.046
w0 - −1
wa - 0
σ8 0.829± 0.014 0.8
ns 0.9655± 0.0062 0.96

Table 1.1: ΛCDM cosmological parameters from the Planck 2015 [14] data best fit (middle
column), with 68% confidence level errors, and the fiducial values used in this work (right
column).
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Chapter 2

Gravitational Lensing

In this Chapter we illustrate the basic concepts of the Gravitational Lensing (GL) effect. GL

is a prediction of General Relativity and states that light rays which travel through space–

time inhomogeneities experience trajectory deflections. We start by deriving an equation

for light ray geodesics in a non homogeneous background, following the derivation in [15].

We then adapt the geodesic solution to the Weak Lensing (WL) case of interest, exploring

also approximate approaches such as the Born approximation. We introduce the basic

observables of WL, which relate density fluctuations to galaxy shape distortions.

2.1 Light ray geodesics

2.1.1 Geodesic equation

A light ray space–time trajectory xµ(τ) is parametrized with a continuous real parameter

τ , which plays the same role as proper time for massive particles. The geodesic equation

(1.2.10) can be rewritten as
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2.1. LIGHT RAY GEODESICS

d2xµ(τ)

dτ 2
= −Γµαβ(xµ(τ))

dxα(τ)

dτ

dxβ(τ)

dτ
(2.1.1)

For the sake of expressing WL observables at first order in the potentials Φ,Ψ which appear

in (1.2.1), it is sufficient to use the linear expressions (1.2.23) for the affine connection

Γµαβ . Later in the Chapter we will make an argument for higher order Post Newtonian (PN)

corrections to be negligible in the scope of this work, following the conclusions of [12].

We introduce a system of coordinates centered on a fundamental observer on Earth, as

illustrated in Figure 2.1

xµ = (ct, χ,x⊥) (2.1.2)

We indicated the transverse coordinates (with respect of the observer) corresponding to an

angle θθθ on the sky as x⊥ = χθθθ. We adopt the so called flat sky approximation, in which

the range of the angles θθθ is assumed to be small. Since photons travel along null geodesics,

their 4–momentum P µ = dxµ/dτ = (p0,p) satisfies gµνP µP ν = 0, which gives the

constraint (at first order in Ψ)

p0 = c
dt

dτ
= p(1−Ψ) (2.1.3)

with p = |p|. Using the fact that dχ/dt = −c/a, we can replace the τ derivatives in (2.1.1)

with χ derivatives using the prescription

d

dτ
=
dt

dτ

dχ

dt

d

dχ
= −p(1−Ψ)

a

d

dχ
(2.1.4)
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CHAPTER 2. GRAVITATIONAL LENSING

If we focus on the transverse components, the LHS of (2.1.1) becomes

d2x⊥
dτ 2

=
p

a

d

dχ

(
p

a

dx⊥
dχ

)
(2.1.5)

In (2.1.5) we dropped small terms of order Ψdx⊥, following [15]. At dominant order the

photon momentum p redshifts as 1/a, and hence we can pull the product pa out of the

differentiation, obtaining
d2x⊥
dτ 2

= p2 d

dχ

(
1

a2

dx⊥
dχ

)
(2.1.6)

Now we can focus on the RHS of (2.1.1) which reads, in the transverse spatial components

Γiαβ
dxα

dτ

dxβ

dτ
=
p2

a2
Γiαβ

dxα

dχ

dxβ

dχ
(2.1.7)

If we expand the products in (2.1.7), using the affine connection (1.2.23) at first order in

the potentials, we obtain

Γiαβ
dxα

dτ

dxβ

dτ
=
p2

a2

[
∂iΨ−

2aH

c

dx⊥,i
dχ
− ∂iΦ

]
(2.1.8)

The complete geodesic equation now becomes

d

dχ

(
1

a2

dx⊥
dχ

)
= − 1

a2

[
∇⊥(Ψ− Φ)− 2aH

c

dx⊥
dχ

]
(2.1.9)

After a few simplifications this assumes the form

d2x⊥(χ)

dχ2
= ∇⊥(Φ(χ,x⊥)−Ψ(χ,x⊥)) (2.1.10)

Using the relation (1.2.28) between the gravitational potentials, which allows us to substi-
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θ
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1

Figure 2.1: Coordinate system centered on a fundamental observer on Earth

tute Ψ = −Φ, equation (2.1.10) becomes

d2x⊥(χ)

dχ2
= 2∇⊥Φ(χ,x⊥(χ)) (2.1.11)

The potential Φ satisfies the Poisson equation (1.2.29), which we can rewrite in our coor-

dinate system (2.1.2) as

∇2Φ(χ,x⊥) = −4πGa(χ)2

c2
ρm(χ)δ(χ,x⊥) (2.1.12)

We substituted the time dependency with a χ dependency using the time–redshift relation

(1.1.17).
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CHAPTER 2. GRAVITATIONAL LENSING

2.1.2 Solution to the geodesic equation

The geodesic equation (2.1.11) is a second order differential equation which can be solved

once suitable initial conditions are specified. If we indicate with θθθ the angular position of

the light ray as it is detected by the observer, we have x⊥(0) = 0 and dx⊥(0)/dχ = θθθ.

Equation (2.1.11) can then be solved by a double integration

x⊥(χ,θθθ) = χθθθ + 2

∫ χ

0

dχ′
∫ χ′

0

dχ′′∇⊥Φ(χ,x⊥(χ′′, θθθ)) (2.1.13)

We can exchange the order of the integration in χ′ and χ′′ by taking advantage of the

triangular shape of the integration domain, and we can perform one of the integrations

analytically to get

x⊥(χ,θθθ) = χθθθ + 2

∫ χ

0

dχ′(χ− χ′)∇⊥Φ(χ′,x⊥(χ′, θθθ)) (2.1.14)

We expressed the solution (2.1.14) to (2.1.11) in implicit form, as the RHS contains x⊥(χ,θθθ)

itself. An implicit expression like (2.1.14) however, present some advantages. First of all,

in order to know the solution at some χs, we only need knowledge of x⊥ for χ < χs,

making (2.1.14) numerically computable via dynamic programming. Moreover, because

the potential Φ appears in the RHS, in the limit in which Φ is small, the implicit form of the

solution suggests a straightforward perturbative approximation in powers of Φ[16], which

will be explored later in the Chapter. In the next section we connect the light ray geodesic

(2.1.14) to the main WL observables.
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2.2. WEAK GRAVITATIONAL LENSING

2.2 Weak Gravitational Lensing

2.2.1 Weak Lensing observables

Gravitational Lensing produces apparent distortions in the observed shapes of background

sources. Following the notation introduced in Figure 2.1, a light ray captured by the ob-

server at a position θθθ, in reality originated from a point that, on the sky, corresponds to

an angle βββ. Overall shifts in the relation βββ(θθθ) do not alter the source (that we assume

distributed on a plane at χ = χs) observed shape, but only cause unobservable image dis-

placements. The lowest order image distortions come from the differential position shifts

∂βi/∂θj , which alter the observed source ellipticity. Higher order flexion corrections to

source shapes have been investigated in the literature [16], but will not be investigated in

this work. Elliptical deformations in the shape of background sources are parametrized in

terms of the deflection Jacobian matrix A

Aij(χs, θθθ) =
∂βi(χs, θθθ)

∂θj
≡

1− κ(θθθ)− γ1(θθθ) −γ2(θθθ) + ω(θθθ)

−γ2(θθθ)− ω(θθθ) 1− κ(θθθ) + γ1(θθθ)

 (2.2.1)

In this parametrization, κ is called the WL convergence, γγγ = (γ1, γ2) is the WL cosmic

shear and ω is the WL rotation angle. Inverting equation (2.2.1) we obtain the relations

κ = 1− TrA/2 ; γ1 = (Ayy − Axx)/2

γ2 = −(Axy + Ayx)/2 ; ω = Tr(Aεεε)/2
(2.2.2)

Figure 2.2 shows a physical interpretation of these different types of distortions, for an

non–lensed circular image. The convergence is related to the background source apparent
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Figure 2.2: Effect of differential distortions due to γγγ, ω on a background circular image
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magnifications, and is not directly observable unless the non–lensed size of the source is

known in advance. The cosmic shear γγγ encodes the ellipticity of the distortion and the

rotation ω is connected to the angular tilt of the distorted image shape. Calling I(βββ) and

Iobs(θθθ) the emitted and observed source intensity profiles respectively, we can define the

observed ellipticity εεε of the distorted image in terms of the quadrupole moment of the

intensity

ε1 =
qxx − qyy

Trq + 2
√
|q|

; ε2 =
2qxy

Trq + 2
√
|q|

(2.2.3)

The quadrupole moment qij is defined by

qij =

∫
dθθθθiθjIobs(θθθ) =

∫
dβββ(A−1βββ)i(A

−1βββ)jI(βββ) (2.2.4)

Flexion corrections have been ignored in the last equality. Provided that the image is small

enough so that κ,γγγ are constant over its profile, equation (2.2.4) can be used to relate the

observed quadrupole moment q to the the non–lensed quadrupole qs as

q = A−1qs
(
AT
)−1

(2.2.5)

If the non–lensed image is a circle, we can use qs = 12×2 to get, ignoring ω terms

ε1 =
(A−1

xx )2 − (A−1
yy )2

Tr (A−1(AT )−1) + 2|A−1|
; ε2 =

2A−1
xy Tr (A−1)

Tr (A−1(AT )−1) + 2|A−1|
(2.2.6)
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After some algebra, we obtain a relation between the ellipticity of the distorted image and

the components of A

εεε = g ≡ γγγ

1− κ
(2.2.7)

which shows that the source ellipticity and shear are proportional to each other and hence

εεε be used to estimate γγγ. Even if the real observable quantity is the reduced shear g ≡

γγγ/(1 − κ), when κ � 1 (which is often the case in WL), one can approximate εεε ≈ γγγ. In

the next section we will show how to relate the WL quantities κ,γγγ, ω to the gravitational

lensing potential Φ.

2.2.2 Ray–tracing

Relating observable WL quantities such as the source ellipticity εεε and the cosmic shear γγγ to

the potential Φ can be done by the means of equation (2.1.14), which relates light geodesics

to the matter density fluctuations. We can convert the transverse physical coordinates x⊥

into angles dividing by the longitudinal distance χ

βββ(χ,θθθ) = θθθ + 2

∫ χ

0

dχ′
(

1− χ′

χ

)
∇⊥Φ(χ′, χ′βββ(χ′, θθθ)) (2.2.8)

Differentiating (2.2.8) with respect to θθθ we can obtain a similar relation for the Jacobian A

Aij(χ,θθθ) = δij + 2

∫ χ

0

dχ′χ′
(

1− χ′

χ

)
TΦ
ik(χ

′, χ′βββ(χ′, θθθ))Akj(χ
′, θθθ) (2.2.9)

In equation (2.2.9) we introduced the tidal tensor TΦ
ij = ∂i∂jΦ. Much like (2.1.14), equation

(2.2.9) is an implicit relation which allows to calculate A(χs, θθθ) at an arbitrary χs once all

values A(χ,θθθ) are known for χ < χs. A numerical solution to this problem which makes
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use of the multi–lens–plane algorithm [17, 18] will be explored in the next Chapter. The fact

that the potential Φ appears on the RHS of (2.2.9) suggests the possibility of a perturbative

expansion of A in powers of Φ, which is expected to be valid when Φ is small. If we focus

on the perturbation terms which are at most quadratic in Φ, we can write

Aij(χ,θθθ) = δij + A
(1)
ij (χ,θθθ) + A

(2)
ij (χ,θθθ) +O(Φ3) (2.2.10)

To obtain an expression for the linear term, we can replace Jacobian on the RHS of (2.2.9)

with the identity matrix and the spatial argument of Φ with the unperturbed χθθθ. This

approach is analogous to the Born approximation commonly used in Quantum Mechanics

when computing scattering amplitudes at first order in the interaction potential. The linear

term in (2.2.10) reads

A
(1)
ij (χ,θθθ) = 2

∫ χ

0

dχ′χ′
(

1− χ′

χ

)
TΦ
ij (χ

′, χ′θθθ) (2.2.11)

Equation (2.2.11) essentially says that, at lowest perturbative order, the lensing Jacobian is

a line integral of the tidal field TΦ
ij along the unperturbed geodesic trajectory χθθθ, weighted

with a lensing kernel W defined by

W (χ′, χ) = χ′
(

1− χ′

χ

)
(2.2.12)

With the use of (2.2.2), we can express the convergence at first order in the lensing potential

as

κ(1)(χ,θθθ) =

∫ χ

0

dχ′W (χ′, χ)δL(χ′, χ′θθθ) (2.2.13)
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where the lensing density δL is

δL(χ,x⊥) = −∇2
⊥Φ(χ,x⊥) (2.2.14)

The meaning of equation (2.2.13) is that the WL convergence κ is the integrated column

density contrast δ on the line of sight between the observer and the source. Note that be-

cause the first order WL quantities are proportional to the integrated tidal field, which is

symmetric, the WL rotation ω vanishes at linear order, as can be seen in equation (2.2.2).

Quadratic corrections to the linear relation (2.2.11) between A and Φ come from two dif-

ferent terms in equation (2.2.9): one term is generated by replacing the Jacobian in the

RHS of (2.2.9) with its first order approximation A(1)
ij , the other comes from the transverse

argument of the tidal field TΦ
ij , which contains the perturbations to the ray geodesics. Using

the approximation

TΦ
ij (χ, χβββ(χ,θθθ)) = TΦ

ij (χ, χθθθ) + χ∂kT
Φ
ij (χ, χθθθ)[β

(1)
k (χ,θθθ)− θk] +O(Φ3) (2.2.15)

we can write a second order expression for A

A(2)(χ,θθθ) = A(2−ll)(χ,θθθ) + A(2−gp)(χ,θθθ) (2.2.16)

A
(2−ll)
ij (χ,θθθ) = 4

∫ χ

0

dχ′
∫ χ′

0

dχ′′W2(χ′′, χ′, χ)TΦ
ik(χ

′, χ′θθθ)TΦ
kj(χ

′′, χ′′θθθ) (2.2.17)

A
(2−gp)
ij (χ,θθθ) = 4

∫ χ

0

dχ′
∫ χ′

0

dχ′′W2(χ′′, χ′, χ)
χ′

χ′′
∂kT

Φ
ij (χ

′, χ′θθθ)∂kΦ(χ′′, χ′′θθθ) (2.2.18)
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with W2(t, u, v) = W (t, u)W (u, v). The term (2.2.17) originates from the lens–lens cou-

pling between the tidal field at different distances χ, while the term (2.2.18) has to do

with the first order perturbations in the light ray geodesics due to the density fluctuations.

Equations (2.2.17) and (2.2.18) can be easily translated into second order expressions for κ

κ(2−ll)(χ,θθθ) = −2

∫ χ

0

dχ′
∫ χ′

0

dχ′′W2(χ′′, χ′, χ)Tr[TΦ(χ′, χ′θθθ)TΦ(χ′′, χ′′θθθ)] (2.2.19)

κ(2−gp)(χ,θθθ) = 2

∫ χ

0

dχ′
∫ χ′

0

dχ′′
χ′W2(χ′′, χ′, χ)

χ′′
∇⊥δL(χ′, χ′θθθ) · ∇⊥Φ(χ′′, χ′′θθθ)

(2.2.20)

For the sake of completeness, we should note that the quadratic terms (2.2.19),(2.2.20) are

not the only ones that contribute to the WL convergence, as they ignore PN corrections. If

one includes the PN corrections to (2.1.11), as shown in [12], additional quadratic contri-

butions κ(2−PN) appear according to the expression

κ(2−PN)(χ,θθθ) =

∫ χ

0

dχ′W (χ′, χ)
[
|∇⊥Φ(χ′, χ′θθθ)|2 + Φ(χ′, χ′θθθ)∇2

⊥Φ(χ′, χ′θθθ)
]

(2.2.21)

Comparing equation (2.2.21) with (2.2.19) and (2.2.20), we can easily observe that PN cor-

rections to κ are suppressed by a factor of order λmH/c, with λm indicating a characteristic

coherence scale for the matter density perturbations. [12] suggest that this suppression fac-

tor can be safely estimated to be of the order of ∼ 10−2 at the location where the lensing

kernel W usually peaks, making PN corrections suppressed by a factor of order of ∼ 10−4.

Throughout this work, we will neglect these PN corrections to κ. We can also derive an
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expression for the dominant contribution to the rotation ω by looking the antisymmetric

part of A, which comes from lens–lens couplings

ω(2)(χ,θθθ) = 2

∫ χ

0

dχ′
∫ χ′

0

dχ′′W2(χ′′, χ′, χ)Tr[TΦ(χ′, χ′θθθ)εεεTΦ(χ′′, χ′′θθθ)] (2.2.22)

In the conclusion of the Chapter we show an approximate relation between the WL conver-

gence and shear that proves particularly useful when analyzing survey data.

2.2.3 E/B mode decomposition of the shear

The convergence κ and cosmic shear γγγ can be approximately related to each other if one

focuses on theirO(Φ) expressions. This relation proves useful in reconstructing the non ob-

servable κ profile from ellipticity observations, which directly probe the shear field. Equa-

tion (2.2.11) clearly states that, at linear order in Φ, the differential distortion A is the

Hessian matrix of the longitudinally projected gravitational potential potential

A
(1)
ij (χ,θθθ) = ∂i∂jΦ2(χ,θθθ) (2.2.23)

Φ2(χ,θθθ) =

∫ χ

0

dχ′

χ′2
W (χ′, χ)Φ(χ′, χ′θθθ) (2.2.24)

Using the linear expression for the convergence

κ(1)(χ,θθθ) = −1

2
∇2
⊥Φ2(χ,θθθ), (2.2.25)

we can invert the Laplacian operator and get an approximate relation between convergence

and shear
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γ1(χ,θθθ) = ∇−2
⊥ (∂2

x − ∂2
y)κ(χ,θθθ) +O(Φ2)

γ2(χ,θθθ) = 2∇−2
⊥ ∂x∂yκ(χ,θθθ) +O(Φ2)

(2.2.26)

This relation can be written in a more compact way in Fourier space using the complex

shear field γ = γ1 + iγ2

γ̃KS(χ, `̀̀) ≡
(
`2
x − `2

y + 2i`x`y

`2
x + `2

y

)
κ̃(χ, `̀̀) = e2iφ`̀̀ κ̃(χ, `̀̀) (2.2.27)

In equation (2.2.27), we introduced the Fourier angle φ`̀̀ defined by cosφ`̀̀ = `x/`, sinφ`̀̀ =

`y/`. Equation (2.2.27) takes the name of Kaiser–Squires (KS) relation between conver-

gence and shear [19], and can be inverted for the sake of reconstructing the convergence

profile from the cosmic shear at first order in Φ

κ̃KS(χ, `̀̀) = e−2iφ`̀̀ γ̃(χ, `̀̀) = γ̃E(χ, `̀̀) + iγ̃B(χ, `̀̀) (2.2.28)

The shear Fourier E and B modes are defined to be

γ̃E(χ, `̀̀) = γ̃1(χ, `̀̀) cos 2φ`̀̀ + γ̃2(χ, `̀̀) sin 2φ`̀̀

γ̃B(χ, `̀̀) = −γ̃1(χ, `̀̀) sin 2φ`̀̀ + γ̃2(χ, `̀̀) cos 2φ`̀̀

(2.2.29)

Note that, because of (2.2.26) and (2.2.29), we have that γ̃E = κ̃+O(Φ2) and γ̃B = O(Φ2).

In practice one can estimate the convergence κ as the E–mode of the shear in the WL

limit, and use the detection of a large B–mode as an indication of systematic effects [20].

Figure 2.3 shows the spatial pattern KS reconstructed shear field corresponding to positive
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Figure 2.3: E–mode pattern for the shear around positive and negative κ peaks

and negative κ peaks. In real observations the convergence profile is reconstructed using

(2.2.28) on the shear field estimated from the observed source ellipticities. Because the

non–lensed shapes of typical galaxies are not circular, equation (2.2.7) cannot be directly

used as an estimator for the shear, because of intrinsic shape contributions to the observed

ellipticity. If the source has an intrinsic complex ellipticity εs, in the limit of |g| < 1, one

can use (2.2.5) to calculate the observed ellipticity of the sheared image ε as (see [18])

ε =
g + εs

1 + g∗εs
(2.2.30)

Equation (2.2.30) still leads to an unbiased estimate of the WL reduced shear (〈ε〉 = g),

provided the intrinsic major axes of the sources are randomly oriented. This however causes

an increase in the statistical error of the κ estimate, which is effectively modeled as an
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additive noise term to the cosmic shear. Shape noise is usually modeled as a Gaussian,

spatially uncorrelated stochastic contribution to each component of the shear [21]. As a net

effect, shape noise acts as white noise κSN on top of the κ signal generated by lensing. In

this work we will assume (see again [21]) for the shape noise

〈κ̂SN(zs, θθθ)κ̂SN(zs, θθθ
′)〉 =

(0.15 + 0.035zs)
2

ng
δD(θθθ − θθθ′) (2.2.31)

where ng is the angular density of source galaxies. Note the 1/ng scaling in the shape noise

root–mean–square value, which is dictated by the Central Limit Theorem.

35



Chapter 3

Numerical Weak Lensing

In this Chapter we describe the relevant numerical methods for simulating WL observa-

tions. We use publicly available software to trace the non–linear time evolution of the

matter density contrast δ(t). We then solve the geodesic equation numerically by adding

the multiple deflections which light experiences when traveling from sources to observers.

The solution of the geodesic equation for a sufficient number of light rays allows to re-

construct the spatial profiles of the WL observables κ,γγγ, ω. We conclude the Chapter by

presenting our ray–tracing software LensTools, which we have publicly released for the

use of the WL community.

3.1 Cosmological simulations

The evolution of the matter density contrast δ is controlled, at linear stage, by equation

(1.2.30). For WL studies, however, δ becomes too big at the redshifts of interest (z ∼ 1) for

the linear approximation to still be valid and exact solutions of (1.2.21), (1.2.22) and (1.1.8)

are required. A popular approach to solve Boltzmann’s equation (1.2.9) for collision–free
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Dark Matter is theN–body method, which proceeds in a discretization of phase space using

a large but finite numberNp of particle tracers (see [9]). The particles are placed in a cubical

periodic box of comoving size Lb and are assigned initial conditions which correspond to

the density contrast at high z, for which the linear approximation is still valid. The particle

system is then evolved with a Hamiltonian that mimics Newtonian gravitational interactions

(PN corrections are neglected under the assumption Lb � c/H), described by the potential

Φ.

3.1.1 Initial conditions

The starting step of an N–body simulation is a configuration of particle positions {xi} and

velocities {vi} at some initial high redshift zin � 1. The starting particle configuration

traces the linear density contrast δ. The particles are initially are arranged in a glass pattern

and are given positions {xgi } which correspond to a uniform density profile (δ ≈ 0). The

particles are displaced from their position in the glass by a small amount d(xgi ), which is

chosen so that the new density profile matches an arbitrary input δ profile. Because mass

is conserved by the displacement transformation, we can impose the condition

ρmd
3xg = ρm(1 + δ)d3x, (3.1.1)

which relates the density contrast δ to the Jacobian of the displacement transformation,

x(d) = xg + d, as

1 + δ =

∣∣∣∣13×3 +
∂d

∂x

∣∣∣∣−1

(3.1.2)

Using the matrix identity
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|1+ λM| = 1 + λTrM +O(λ2) (3.1.3)

for a generic square matrix M and real λ, and noting that at high redshift we expect δ and

d to be small, we obtain a linear relation between the density contrast and the displacement

field, which reads

δ = −∇ · d (3.1.4)

A possible solution to equation (3.1.4) is best expressed in Fourier space if we assume the

displacement to be longitudinal (which is a good assumption since the peculiar velocity

field is approximately curl–free)

d̃(k) =
ik

k2
δ̃(k) (3.1.5)

Equation (3.1.5) takes the name of Zel’dovich approximation (see [22] for a review), and

it essentially states that the displacement field that corresponds to the input δ profile is

proportional to the gradient of the local gravitational potential. The Fourier coefficients

δ̃(k) are random draws from a normal distribution with variance Pδ(k, zin). The linear δ

power spectrum Pδ(k, zin) can be analytically computed with Einstein–Boltzmann software

such as CAMB [23]. We assign the initial peculiar velocities v = ḋ in the context of the

Zel’dovich approximation using the time derivative of δ. Since we limit ourselves to Dark

Matter density perturbations, we can assume a self–similar linear growth model described

by the linear growth factor D(z), which appears in equation (1.2.32). In order to imprint

baryon physics in the initial conditions, we adopt a hybrid approach in which we use CAMB

to compute the linear matter power spectrum P lin
δ (k, 0) at the present time, with baryons
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included. We then scale P lin
δ back to zin = 100 using the linear growth factor

Pδ(k, zin) = P lin
δ (k, 0)

(
D(zin)

D(0)

)2

(3.1.6)

This initial condition (which includes baryon effects) is then evolved according to Dark

Matter only collision–free dynamics. Random realizations of δ̃ are drawn from a normal

distribution with variance P lin
δ and the peculiar particle velocities v are assigned according

to

ṽ(k) =
ik

k2
δ̃(k)

(
ż

D(z)

dD(z)

dz

)
z=zin

(3.1.7)

We used the N-GenIC software add–on to Gadget2 [9] in order to generate random

realizations of the d,v initial conditions from the linear δ power spectrum P lin
δ (k, 0).

3.1.2 Time evolution

Once generated, the initial conditions specified by equations (3.1.5) and (3.1.7) are evolved

in time from z = zin until the present redshift z = 0. Since we consider collision–free Dark

Matter, which interacts only via gravitational forces, the Hamiltonian H of the particle

system (ignoring PN corrections, since we are in the limit Lb � c/H) can be written as

H =

Np∑
i=1

p2
i

2mia(t)2
+

1

2

∑
i 6=j

mimjϕ(xi − xj) (3.1.8)

We denoted the particle masses as mi, the particle momenta conjugated to the comoving

coordinates xi as pi and the pair interaction potential per unit mass as as ϕ. If periodic

boundary conditions are imposed on the boundary of the simulation box, the interaction
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potential satisfies the Poisson equation

∇2ϕ(x) =
4πG

a

(∑
n∈Z3

δrs(x− nLb)−
1

L3
b

)
(3.1.9)

where δrs is the Dirac delta function δD convolved with a softening kernel of scale rs. The

softening is introduced because the N–body particles are in reality extended objects and

the Newtonian interaction potential needs to be smoothed out on interaction scales smaller

than rs. In our simulations rs has been fixed to rs ≈ 10 kpc/h. Note that the summation

can be dropped if we restrict x to be inside the box, but is important in order to enforce the

periodic boundary conditions. We can relate ϕ to the gravitational potential in (1.2.29) by

Φ(x, t) = − 1

c2

Np∑
i=1

miϕ(x− xi(t)) (3.1.10)

We can observe that, inside the simulation box, equation (3.1.10) leads to

∇2Φ(x, t) = −4πGa2

c2

(
Np∑
i=1

miδrs (a(x− xi(t)))−
1

a3L3
b

Np∑
i=1

mi

)
(3.1.11)

Note that (3.1.11) is essentially the discretized version of (1.2.29) for a system made of

Np particles, where gravitational forces are softened on scales below rs. The Hamiltonian

equations of motion derived from (3.1.8) can be numerically integrated and yield a trajec-

tory xi(t) for each particle. To preserve the Hamiltonian nature of the time evolution, [9]

suggest adopting a Kick–Drift–Kick (KDK) numerical integration scheme. The drift step

updates the particle coordinates from their momenta, while the kick updates the momenta

using the local force field. The force field calculation requires the solution of (3.1.9) and a
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summation over all particle pairs, which leads to an O(N2
p ) time complexity. In the limit of

collision–free dynamics, approximate force field calculations can be performed with a sig-

nificantly lower complexity using the hybrid Tree Particle Mesh (TreePM) approach. The

details of the force field calculation, time integration and TreePM implementation can be

found in the Gadget2 paper [9]. We used the publicly available version of the Gadget2

code to perform the N–body simulations on which our WL simulations are based. We

stored the N–body simulation outputs {xi(t)} at a discrete set of time steps {tk}. We then

used these outputs to estimate the potential Φ necessary from which WL observables κ,γγγ

can be reconstructed. We describe the numerical details of the WL simulations in the next

section.

3.2 The multi–lens–plane algorithm

3.2.1 Geodesic solver

In this section we review the algorithm used to solve the light geodesic equation (2.1.11).

This algorithm allows us to compute the βββ (2.2.8) and A (2.2.9) integrals in an efficient

and numerically stable fashion. In the remainder of the Chapter we will assume that source

galaxies are positioned at fixed longitudinal comoving distance χs. A particular light ray

is observed at an angular position θθθ on the sky due to lensing, but its originating angular

position is βββ(χs, θθθ). θθθ and βββ are related through equation (2.1.11). Numerical integration

of (2.2.8) is performed dividing the interval χ ∈ [0, χs] in Nl equally spaced steps, each of

size ∆ = χs/Nl and using a first order explicit method
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∫ χs

0

f(χ)dχ = ∆

Nl∑
i=1

f(χk) +O

(
1

Nl

)
(3.2.1)

χk = k∆ (3.2.2)

In this notation, f is a generic function of χ and can be identified with either βββ or A.

Before applying the numerical integration method to (2.1.11), it is convenient to rewrite

the geodesic equation as an equation for βββ = x⊥/χ

d2

dχ2
(χβββ(χ)) =

2

χ
∇βββΦ(χ,βββ(χ)) (3.2.3)

We promoted the x⊥ dependency of Φ to a β dependency using Φ(χ,x⊥ = χβββ)→ Φ(χ,βββ).

Equation (3.2.3) is equivalent to

d2βββ(χ)

dχ2
+

2

χ

dβββ(χ)

dχ
− 2

χ2
∇βββΦ(χ,βββ(χ)) = 0 (3.2.4)

Now let us consider an intermediate discrete step k and introduce the compact notation

fk ≡ f(χk) ; f ′k ≡
df
dχ

∣∣∣
χ=χk

; f ′′k ≡
d2f
dχ2

∣∣∣
χ=χk

(3.2.5)

We define

αααk =
2∆

χk
∇βββΦ(χk,βββk). (3.2.6)

Using the first order finite difference approximations for the βββ derivatives

βββ′k = βββk+1−βββk−1

2∆
+O(∆2) ; βββ′′k = βββk+1+βββk−1−2βββk

∆2 +O(∆2), (3.2.7)
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Figure 3.1: Multi–lens–plane algorithm schematics: the trajectory of a single light ray from
the observer to the source at χs is shown in red as it undergoes the multiple deflections
caused by the lensing effect.

we can rewrite equation (3.2.4) as

βββk+1 + βββk−1 − 2βββk
∆2

+
βββk+1 − βββk−1

χk∆
− αααk
χk∆

= 0 (3.2.8)

Once we solve (3.2.8) for βββk+1, we immediately find

βββk+1 =
2βββkχk − (χk −∆)βββk−1 + ∆αααk

χk + ∆
(3.2.9)

The expression (3.2.9) has a simple physical interpretation that we can understand by look-

ing at the diagram in Figure 3.1. If we want to calculate the angular position of a light ray

at the k+ 1-th step, we need to know its position at the two previous steps k, k− 1. Simple

geometric arguments, combined with the small deflection assumption, tell us that
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βββk+1 =
1

χk+1

[
(χβββ)k +

(
(χβββ)k − (χβββ)k−1

χk − χk−1

+αααk

)
(χk+1 − χk)

]
(3.2.10)

Note that equations (3.2.9) and (3.2.10) are equivalent if the steps are equally spaced, which

is the case in our integration scheme defined by χk = k∆. This equivalence tells us that

the quantity αααk, which is proportional to the gradient of the potential as stated in (3.2.6), is

the deflection angle that a light ray experiences upon impact with a two dimensional lens

plane of thickness ∆ positioned at a longitudinal distance χk. This is why the procedure of

solving (3.2.4) in discrete χ steps takes the name of multi–lens–plane algorithm [17, 18].

The solution is obtained by summing up a discrete set of trajectory deflections αααk which

are caused by a discrete set of two dimensional lens planes. Each plane is characterized

by a lensing potential which is the three dimensional gravitational potential Φ projected

along the longitudinal direction. We observe that equation (3.2.6) is essentially the discrete

longitudinal integral of∇⊥Φ performed with a step of size ∆. Using the initial conditions

βββ0 = βββ1 = θθθ (3.2.11)

we can use the recurrence relation (3.2.9) to compute the light ray trajectory from the

observed to the starting angle βββs. It turns out that, because the coefficient that multiplies

βββk in (3.2.9), 2χk/(χk + ∆) is usually bigger than 1, this explicit method of solution

leads to roundoff errors which blow up exponentially in k. To keep the accuracy of the

geodesic solver under control we recast (3.2.9) in a slightly different form by defining

δβββk ≡ βββk − βββk−1. It is straightforward to show that
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βββk = θθθ +
k∑
i=1

δβββi (3.2.12)

δβββk+1 =

(
χk −∆

χk + ∆

)
δβββk +

(
∆

χk + ∆

)
αααk (3.2.13)

It turns out that, because the coefficients that multiply δβββ,ααα are smaller than 1, (3.2.12)

and (3.2.13) offer a more accurate numerical solution to the geodesic equation (3.2.4). We

can solve the geodesic equation for light rays with different initial conditions θθθ, and study

how the solution varies with θθθ. This allows to translate the recurrence relations (3.2.12),

(3.2.13) into recurrence relations for the lensing Jacobian A. Observing that

∂(αi)k
∂θj

=
2∆

χk
∂βi∂βlΦ(χk,βββk)

∂(βl)k
∂θj

, (3.2.14)

we define the projected tidal field

Tk = 2χk∆TΦ(χk,βββk). (3.2.15)

The recurrence relations for the Jacobian A can then be written as

Ak = 12×2 +
k∑
i=1

δAi (3.2.16)

δAk+1 =

(
χk −∆

χk + ∆

)
δAk +

(
∆

χk + ∆

)
TkAk (3.2.17)

The recurrence relations (3.2.16),(3.2.17) are used to estimate the WL quantities κs, γγγs at

an arbitrary angle θθθ on the sky in O(Nl) time. The set of discrete deflections αααk and tidal

distortions Tk are calculated from the potential Φ. In the next sub–section we will describe

the numerical methods necessary to solve the Poisson equation (2.1.12) that relates the
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potential Φ to the matter density contrast δ.

3.2.2 Poisson solver

The ray deflections and tidal distortions experienced after each lens crossing are determined

by the density fluctuations which are responsible for the WL effect. We define the two–

dimensional projected potential ψ for a lens plane centered at comoving distance χ with

thickness ∆ as

ψ(χ,βββ) =
2

χ

∫ χ+∆/2

χ−∆/2

dχ′Φ(χ′,βββ) (3.2.18)

Using the definition in (3.2.18), we obtain expressions for the deflections and tidal distor-

tions in terms of ψ

αααk = ∇βββψ(χk,βββk) (3.2.19)

Tk = ∇βββ∇T
βββψ(χk,βββk) (3.2.20)

Inserting (3.2.18) into the Poisson equation (2.1.12) we observe that ψ itself satisfies a

Poisson–like equation

∇2
βββψ(χ,βββ) =

2

χ

∫ χ+∆/2

χ−∆/2

dχ′χ′2
(
∇2 − ∂2

∂χ′2

)
Φ(χ′, χ′βββ) (3.2.21)

In approximating ∇2
βββ ≈ χ2(∇2 − ∂2

χ) we made an assumption of small ∆, so that we can

neglect the time evolution of Φ within the lens. If ∆ is small we can also treat the ∂2
χ term

in the integral as a boundary term, which vanishes when appropriate boundary conditions

for the Poisson equation are imposed (we can choose periodic boundary conditions as an
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example). With the help of (2.1.12) we obtain

∇2
βββψ(χ,βββ) = −σ(χ,βββ) (3.2.22)

σ(χ,βββ) =
8πGχa(χ)2∆

c2
ρ̄m(χ)δ(χ, χβββ) =

3H2
0 Ωmχ∆

c2a(χ)
δ(χ, χβββ) (3.2.23)

The dimensionless surface density σ which appears in (3.2.23) can be estimated from the

outputs of N–body simulations using a particle number count histogram which measures

the density contrast δ. The N–body outputs consist in a list of Np particle positions

{(xp, yp, zp)} computed at times t(χk). Let us assume without loss of generality that z

is the longitudinal direction and (x, y) are the transverse coordinates. We divide the lens

plane in a two–dimensional regularly spaced grid {(xi, yi)} in the transverse direction. The

grid has LP pixels per side, each of comoving size size Lb/LP . We assign to each pixel on

the grid a particle number count

n(χ,βββi) =

Np∑
p=1

wn(xp, χ,βββi) (3.2.24)

where

wn(xp, χ,βββi) =


1 if (xp, yp) in χβββi , zp ∈ [χ−∆/2, χ+ ∆/2]

0 otherwise

(3.2.25)

We then estimate the density contrast δ at each grid pixel from the histogram as
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δ(χ, χβββi) =
n(χ,βββi)LbL

2
P

∆Np

− 1 (3.2.26)

We assigned the same mass m = ΩmρcL
3
b/Np to all the particles in the simulation. Once

the density contrast is estimated from the N–body outputs, the two dimensional Poisson

equation (3.2.22) can be solved on the regular transverse grid, at each of the discrete time

steps χk. If we impose periodic boundary conditions on the edges of the lens plane, an

efficient solution to (3.2.22) can be obtained using the FFTs of ψ and σ. Note that, because

both of these quantities are real, a real FFT is sufficient. Inverting the laplacian operator in

Fourier space yields the relation

ψ̃(χk, `̀̀) = σ̃(χk, `̀̀)
e−`

2θ2G/2

`2
(3.2.27)

We applied a Gaussian smoothing smoothing factor e−`2θ2G/2 to the solution (3.2.27) in

order to suppress sub–pixel particle shot noise. We chose θG to be the angular size of one

lens pixel in real space. The time complexity of the potential calculation from the N–body

outputs is dominated by the Poisson solver [24], which has a runtime of O(L2
P logLP ).

Figure 3.2 shows an example lens (density and potential) plane based on equations (3.2.26),

(3.2.27).

3.2.3 Cosmic variance sampling

The multi–lens–plane integration scheme for equation (2.2.9) suggests a way of producing

multiple WL image realizations starting from a single N–body simulation. This is possible

thanks to the fact that the size of the box Lb can be chosen to be big enough so that the field

of view spanned by the observed ray positions θθθ covers the simulation box only partially,
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Figure 3.2: Dimensionless density σ (left) and corresponding potential ψ for a lens plane
at zl = 0.7, cut from a Np = 5123, Lb = 240 Mpc/h N–body simulation.

χkθ < Lb. Periodic shifts of the lens planes along directions perpendicular to the line of

sight yield different lenses with identical statistical properties, and lead to different realiza-

tions of κ,γγγ images. For each realization, the lens system is constructed according to the

following procedure:

• Consider a discrete step χk and choose a random N–body simulation among a set of

Ns independent simulations (Ns = 1 if only one N–body simulation has been run)

• Choose a random direction between (x̂, ŷ, ẑ) to be the longitudinal direction. The

other two directions will be the transverse coordinates x⊥

• Cut a random slice of size ∆ from the N–body output at t(χk), along the chosen

longitudinal direction

• Calculate the surface density contrast σk on the slice and solve the Poisson equation

(3.2.22)
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• Periodically shift the lens along the transverse directions by a random amount

• Repeat the steps for the next lens plane at distance χk+1

We follow this prescription to recycle the outputs of Ns independent N–body simulations

and to produce Nr � Ns realizations of WL observables. These simulated WL ensembles

can be used to estimate the estimator scatters caused by cosmic variance, as well as estima-

tor means. Because Nr is bigger than Ns, these WL realizations are pseudo–independent,

but can be treated as effectively independent if Nr is not too large. This approximate

independence issue, along with its implications on WL observation analysis, has been in-

vestigated in [25] and will be one of the topics in Chapter 5.

3.3 Approximate methods

In this section we describe the numerical implementation of the approximate methods

shown in (2.2.13), (2.2.19) and (2.2.20). These methods provide us with a recipe to com-

pute the Born contribution and first post–Born corrections to the convergence κ as line–of–

sight integrals on the unperturbed ray trajectories.

3.3.1 Born approximation

The Born contribution to κ for sources at distance χs involves a single integral over χ and

can be readily obtained using the first order method in (3.2.1). At O(∆) precision we can

write

κ(1)
s (θθθ) = −∆

Nl∑
k=1

Wksχk∇2
⊥Φ(χk, χkθθθ) (3.3.1)
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where we introduced the compact notation Wkk′ = 1−χk/χk′ . Using the relations (3.2.18)

and (3.2.22), we can relate the first order convergence κ(1) to the discrete set of dimension-

less lens densities {σk ≡ σ(χk, χkθθθ)} as

κ(1)
s =

1

2

Nl∑
k=1

σkWks (3.3.2)

Note that not only the Born–approximated convergence can be efficiently computed in

O(Nl) time, but such approximate approach does not even require knowledge of the solu-

tion to the Poisson equation (3.2.22). At linear order in the potential Φ, the shear field γγγ

can be calculated from the Born–approximated κ via the use of the KS relation (2.2.27).

3.3.2 Post–Born corrections

The evaluation of the second order corrections to κ that appear in equations (2.2.19) and

(2.2.20) involve two integrals over χ. This computation, if implemented naively, leads to

an O(N2
l ) runtime algorithm. When we apply the first order method in (3.2.1) twice we

obtain

κ(2−ll)
s = −1

2

Nl∑
k=1

k∑
m=1

WksWmkTr(TmTk) (3.3.3)

κ(2−gp)
s =

1

2

Nl∑
k=1

k∑
m=1

WksWmk(αααm · ∇σk) (3.3.4)

Note that, since we are performing the integrals along unperturbed trajectories, the angular

arguments of σk,αααk,Tk are fixed to be βββk ≡ θθθ for each light ray. Note also that the

gradient in (3.3.4) is taken in the angular coordinates. As previously stated, the naive

implementation defined by (3.3.3) and (3.3.4) leads to an O(N2
l ) runtime, which can be
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Figure 3.3: Sample κ reconstruction from one N–body simulation with Lb = 260 Mpc/h
and Np = 5123. The lens planes have a thickness of ∆ = Lb/3 and are resolved with
L2
P = 40962 pixels. The κ maps are reconstructed with 20482 light rays arranged in a

regular grid. The source galaxies are placed at redshift zs = 2. The residuals κ − κ(1) are
dominated by the geodesic term κ(2−gp).

52



3.4. THE LENSTOOLS SOFTWARE PACKAGE

quite inefficient if the number of lenses and light rays is large. We can design a more

efficient algorithm, which runs in linear time, if we cache the partial sums

Iααα,0k =
∑k

m=1αααm ; Iααα,1k =
∑k

m=1 χmαααm

IT,0k =
∑k

m=1 Tm ; IT,1k =
∑k

m=1 χmTm

(3.3.5)

The cached algorithm runs in linear time, as can be seen in the following relations

κ(2−ll)
s = −1

2

Nl∑
k=1

WksTr

[
Tk

(
IT,0k − IT,1k

χk

)]
(3.3.6)

κ(2−gp)
s =

1

2

Nl∑
k=1

Wks∇σk ·
(
Iααα,0k −

Iααα,1k

χk

)
(3.3.7)

Figure 3.3 shows a sample κ reconstruction from one N–body simulation, including the

full ray–tracing map and a comparison between the residuals κ− κ(1) and the second order

terms κ(2−ll), κ(2−gp).

3.4 The LensTools software package

In this section we present LensTools[24], a PYTHON software package that we devel-

oped in order to efficiently handle the WL operations discussed in this Chapter.

LensTools implements pipeline of operations which allow to produce simulated κ,γγγ

images starting from a set of ΛCDM parameters (see Chapter 1). The sequence of opera-

tions in the pipeline is described by the diagram in Figure 3.4 The LensTools pipeline

glues together the CAMB, N-GenIC and Gadget2 public codes, used in the N–body

simulations, with PYTHON code. The Φ calculations and ray–tracing operations are also
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Mix seeds

Lens: Φ2(x, z)

δN(x, z)IC seed N

Parameters geometry+seeds

Lens: ΦN(x, z)

Gadget2 lenstools.planes

Lensing maps (κ, γ)

Lens: Φ1(x, z)

CAMB+NGen-IC

IC seed 2

IC seed 1

lenstools.raytracing

δ 1(x, z)

δ 2(x, z)

Figure 3.4: Scheme of the LensTools pipeline flow. Vertical arrows are directed from
a particular application to its input. Horizontal arrows are directed from the input to the
output products.

implemented in PYTHON. The solution to the Poisson equation (3.2.22) can be efficiently

found via FFT, which LensTools performs using the NUMPY FFTPack [26]. The ray–

tracing operations (3.2.12), (3.2.13), (3.2.16), (3.2.17) are also efficiently implemented

with NUMPY taking advantage of vectorized linear algebra routines. LensTools also

provides efficient implementations of the second order approximate methods for κ, which

are defined by equations (3.3.2), (3.3.6) and (3.3.7).

Table 3.1 shows CPU time benchmarks for a test run performed on the XSEDE Stam-

pede computer cluster (see https://portal.xsede.org/tacc-stampede). The

Np particles in each snapshot are divided between Nt files, which are read in parallel by

Nt independent tasks. After the particle counting procedure (3.2.24) is performed by each

task on the regular grid, the total surface density (calculated on a plane of L2
P pixels) is

assembled by the master task, which then proceeds with the solution the Poisson equation
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Step Complexity Test case Runtime

Lens plane generation
N–body input1 O(Np/Nt) Np = 5123, Nt = 16 2.10 s
Density estimation (3.2.24) O(Np/Nt) Np = 5123, Nt = 16 0.20 s
MPI Communication O(L2

P logNt) Nt = 16, LP = 4096 0.76 s
Poisson solver (3.2.27) O(L2

P logLP ) LP = 4096 2.78 s
Lens plane output O(LP ) LP = 4096 0.04 s

Ray tracing
Lens plane input O(L2

P ) LP = 4096 0.32 s
Random plane shift O(LP ) LP = 4096 0.15 s
αααk,Tk calculations (3.2.19),(3.2.20) O(NR) NR = 20482 1.54 s
Tensor products TkAk in (3.2.17) O(NR) NR = 20482 1.29 s

Table 3.1: Ray–tracing operation benchmarks (see [24]). The numbers refer to tests con-
ducted on the XSEDE Stampede cluster. Parallel operations are implemented with mpi4py
[27], a PYTHON wrapper of the MPI library [28].

via FFT according to (3.2.27). The ψ outputs are then saved to disk. In a subsequent step,

the lensing potential files are read from disk, and the geodesic equation (3.2.4) is solved for

NR different observed ray positions θθθ. This leads to the reconstruction of the WL shear γγγ

and convergence κ profiles in the field of view spanned by θθθ. Multiple κ,γγγ realizations can

be obtained with the sampling procedure described in § 3.2.3. Figure 3.5 shows the mem-

ory load as a function of the runtime for the plane generation and ray–tracing operations

for the same test case shown in Table 3.1. The plot shows that, for the considered test case,

computer clusters with at least 2 GB of memory per core are suitable for safely handling

the LensTools operations (for this test case) without exhausting the resources.

The pipeline products are organized in a hierarchical directory structure whose lev-

els correspond to specifications of ΛCDM cosmological parameters, choices of Lb, Np,

random seeds for the initial conditions δ̃(k) and choices of the lens plane parameters
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Figure 3.5: Memory load as a function of runtime for plane generation (black) and ray–
tracing operations (red). Each vertical line corresponds to the completion of a ψ plane
calculation (black) and a lens crossing during ray–tracing (red).

LP ,∆. Separate directory tree levels are dedicated to the WL products κ,γγγ. Both sin-

gle redshift images and shear catalogs can be produced. LensTools provides an API

to initialize, navigate and update the pipeline directory tree in a clean and efficient way,

thus allowing easy retrieval of WL simulation products for further post–processing. For a

throughout presentation of LensTools, we direct the reader to the code documentation

at http://lenstools.rtfd.io.
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Chapter 4

Shear image features

In this Chapter we describe how we can compress the high dimensional information con-

tained in shear and convergence images into lower dimensional summary statistics (which

we call features throughout the remainder of this work). These image features will then

be used to infer the values of the ΛCDM parameters which describe our Universe. We

focus our analysis on the two–dimensional κ images which can be generated with the ray–

tracing simulations described in Chapter 3. The images span a square field of view of size

θ2
FOV and, within the limits of the sampling procedure described in § 3.2.3, are indepen-

dent from each other. Because of the stochastic nature of WL observables (which is due

to cosmic variance), information on cosmology is inferred from ensemble averaged quan-

tities 〈f(κ̂)〉, where f is a generic function of κ and the expectation value 〈〉 is taken over

independent WL realizations. A two–dimensional Gaussian field is completely character-

ized, from a statistical point of view, in terms of quadratic image features, such as the field

two–point correlation function or the its angular power spectrum. Since WL traces the

statistical properties of the density contrast δ, whose evolution is controlled by non–linear
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equations, WL observables cannot be modeled as Gaussian random fields. There is hence

a possibility that cosmological information leaks from quadratic features into higher order

statistics. In this work we consider two types of image features. One possibility consists

of real space features, which have to do with the morphology of the image and can be ex-

pressed in terms of expectation values of local estimators. The second type of features are

defined in Fourier space. We focus on the angular κ power spectrum, a non–local feature

that encodes quadratic spatial correlations of the κ profile. In this Chapter we examine the

relevant properties, advantages and drawbacks of these image features.

4.1 Local expectation values in real space

Knowledge of the angular profile κ̂(θθθ), combined with the statistical isotropy assumption,

allows us to estimate ensemble averages 〈〉 as real space spatial averages according to

〈f(κ̂)〉 =
1

θ2
FOV

∫
FOV

dθθθf(κ̂)(θθθ) (4.1.1)

In this section we describe a systematic way to relate expectation values of local estimators

to the connected moments of κ, following the derivation given in [29]. Since the estimators

considered in this Chapter contain at most second order spatial derivatives in κ, we can

assume the most general one of them to be a function of the N–dimensional vector K,

formally defined by

K = (α,ηηη, ζζζ) =
1

σ0

(κ,∇κ, ∂2
xκ, ∂

2
yκ, ∂x∂yκ) (4.1.2)
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We indicated the first and second derivative of the κ field as ηηη and ζζζ respectively. ηηη, ζζζ are

expressed in units of the variance of κ, σ2
0 = 〈κ2〉. We assume 〈κ〉 = 0 without loss of

generality. The probability distribution of K, L(K), and its characteristic function Z(J)

are related according to

Z(J) =
〈
eiJ·K

〉
=

∫
dKL(K)eiJ·K (4.1.3)

Note that, using the definition (4.1.3), the expectation value of any polynomial Ki1 ...Kin

can be calculated in terms of derivatives of Z using the expression

〈Ki1 ...Kin〉 =

[(
−i ∂

∂Jii

)
...

(
−i ∂

∂Jin

)
Z(J)

]
J=0

(4.1.4)

Writing Z as an exponential of connected terms

Z(J) = exp

( ∞∑
n=2

in

n!
M

(n)
i1...in

Ji1 ...Jin

)
, (4.1.5)

we can readily identifyM (2) as the covariance matrix of K, because M(2) = 〈KKT 〉. For a

Gaussian field, allM (n) with n > 2 vanish, and the correlations (4.1.4) are easy to compute

because the argument of the exponential in (4.1.5) has only one term. If K is non–Gaussian,

like in the WL case, perturbative approaches to the calculation of (4.1.4) can be attempted

if the connected moments M(n) do not grow too fast with n. The perturbative series is

obtained from the inverse Fourier transform of Z after the M(2) term has been factored out:

L(K) =

∫
dJ

(2π)N
exp

(
−1

2
JTM(2)J− iJ ·K

)
exp

( ∞∑
n=3

in

n!
M

(n)
i1...in

Ji1 ...Jin

)
(4.1.6)
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Because multiplications in J space act as gradients in K space, and since we know how to

perform Gaussian integrals analytically, we can convert (4.1.6) into

L(K) = exp

( ∞∑
n=3

(−1)n

n!
M

(n)
i1...in

∂Ki1 ...∂Kin

)
LG(K) (4.1.7)

LG(K) =
1√

(2π)N |M(2)|
exp

(
−1

2
KT (M(2))−1K

)
(4.1.8)

The expression (4.1.7) of the K likelihood in term of its connected moments also suggests

that, in order to calculate the expectation value of a generic function f(K), we can take

advantage of integration by parts and write

〈f(K)〉 =

〈
exp

( ∞∑
n=3

M
(n)
i1...in

n!
∂Ki1 ...∂Kin

)
f(K)

〉
G

(4.1.9)

where the expectation values 〈〉G are computed with the Gaussian probability distribution

(4.1.8). Expanding the exponential in (4.1.9) in a power series leads to a perturbative

expansion for the expectation value 〈f(K)〉 in terms of the connected moments M (n). The

series has a chance to converge if M(n) → 0 as n grows, which could be the case for the κ

maps examined in this work. Symmetry under rotations suggests that the covariance matrix

M(2) can be parametrized in terms of two parameters σ2
η = 〈η2〉, σ2

ζ = 〈(ζxx+ζyy)
2〉 which

appear in M(2) according to the expression

〈α2〉 = 1 ; 〈αηηη〉 = 〈ηηηζζζ〉 = 0

〈ηiηj〉 = −〈αζij〉 =
σ2
ηδij

2
; 〈ζijζkl〉 =

σ2
ζ

8
(δijδkl + δikδjl + δilδjk)

(4.1.10)
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A series expansion for local expectation values can be built from (4.1.9) once an assumption

is made about the magnitude of the connected moments M(n). Following [29], we will

assume that M(n) = O(λn−2), where λ is a dimensionless parameter which describes small

departures from Gaussianity. Note that, in order for the perturbation series to converge,

λ needs to be small. Under this assumption, we can write the first few terms in the 〈f〉

expansion as

〈f(K)〉 = 〈f(K)〉G + 〈f(K)〉3 + 〈f(K)〉4 +O(λ3) (4.1.11)

with

〈f(K)〉3 =
1

6
M

(3)
i

〈
∂f(K)

∂Ki

〉
G

(4.1.12)

〈f(K)〉4 =
1

24
M

(4)
i

〈
∂f(K)

∂Ki

〉
G

+
1

12
M

(3)
i M

(3)
j

〈
∂2f(K)

∂Ki∂Kj

〉
G

(4.1.13)

In equations (4.1.12), (4.1.13) we grouped individual K vector indexes in the multi–indexes

i, j. Note that the quartic perturbation term (4.1.13) includes disconnected contributions

(M(3))2 which are of the same order as M(4). In the next section we test the validity of this

perturbative approach on morphological features of simulated κ images.

4.2 Minkowski Functionals

The Large Scale Structure of the cosmic density fluctuations is known to display prominent

morphological features such as one dimensional filaments (see the structure in Figure 3.2 as

an example). In the hope that a morphological description of κ contains valuable informa-

tion about cosmology, we considered a class of two dimensional morphological descriptors
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Figure 4.1: Example of a κ–excursion set (black, right panel) for a simulated field of view
of size θFOV = 3.5 deg, with κ0 = 0.02, referred to the image on the left panel. The
κ = 0.02 iso–contours have been indicated in red. The sources have been placed at a
constant redshift zs = 2. The image has been convolved with a Gaussian kernel of size
θG = 0.5′.

known as Minkowski functionals (MFs) [30, 29, 31, 32, 33]. MFs of κ images are defined

on the value–based spatial partitions of the image, commonly known as excursion sets. A

κ0–excursion set Σ(κ0) is defined to be the set of angular positions θθθ for which κ(θθθ) > κ0,

as shown in Figure 4.1. The only three translation and rotation invariant morphological

descriptors that can be measured from κ–excursion sets are the area V0 of Σ(κ0), the length

V1 of its boundary ∂Σ(κ0), and its Euler characteristic V2 [29]. For computational conve-

nience, V2 can be related to the geodesic curvature K of the excursion set boundary by the

Gauss–Bonnet theorem. We can formally define the three MFs Vk(κ0) as

V0(κ0) =

∫
Σ(κ0)

dθθθ ; V1(κ0) =

∫
∂Σ(κ0)

dl ; V2(κ0) =

∫
∂Σ(κ0)

Kdl (4.2.1)
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In equation (4.2.1), we indicated the line element on the boundary as dl. The definitions

(4.2.1) emphasize the symmetry of the MFs under rotations, but do not offer a computa-

tionally convenient method to measure them. These definitions can be re–expressed, with

some algebra, as area integrals of local quantities in the same form as equation (4.1.1). The

area functional V0 can be conveniently measured by thresholding the pixel values in the κ

map:

V0(κ0) =

∫
dθθθΘ(κ(θθθ)− κ0). (4.2.2)

The perimeter functional can be expressed as an area integral with the help of integration

by parts. The boundary of the excursion set ∂Σ(κ0), corresponds by definition to the set of

points κ ≡ κ0, which is orthogonal to the gradient ∇κ. The normality condition allows us

to find unit vectors which are tangent and normal to the boundary, which we call t,n. We

can write

t =

(
∂yκ

|∇κ|
,− ∂xκ

|∇κ|

)
; n = − ∇κ

|∇κ|
(4.2.3)

It is easy to show, with the help of (4.2.3), that t · n = 0 and that n points to the exterior of

the excursion set. With a double integration by parts we can also show that

V1(κ0) =

∫
∂Σ(κ0)

n · ndl =

∫
dθθθΘ(κ− κ0)∇ · n =

∫
dθθθδD(κ− κ0)|∇κ| (4.2.4)

Equation (4.2.4) yields a local estimator of the excursion boundary perimeter in terms of

the gradient of κ. A similar procedure can be employed to compute the Euler functional

V2, taking advantage of the definition of the geodesic curvature K as the variation of the
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tangent direction t across the boundary:

dt

dl
= Kn. (4.2.5)

Equation (4.2.5) leads to

K =
titj∂i∂jκ

|∇κ|
(4.2.6)

We now perform the double integration by parts, much like we did for (4.2.4), to get

V2(κ0) =

∫
dθθθδD(κ− κ0)

(
2∂x∂yκ∂xκ∂yκ− ∂2

xκ(∂yκ)2 − ∂2
yκ(∂xκ)2

|∇κ|2

)
(4.2.7)

Equations (4.2.2), (4.2.4) and (4.2.7) provide practical estimators for measuring the mor-

phological features Vk from an image by thresholding pixel values and measuring local κ

gradients. In the next sub–section we will derive a relation between Vk and the real space

moments of κ.

4.2.1 Relation with the moments of κ

The expectation value of the estimators defined in (4.2.2), (4.2.4) and (4.2.7) can be ex-

pressed as ensemble expectation values of functions of κ̂ using equation (4.1.1). We can

write
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V0(κ0) = θ2
FOV〈Θ(κ̂− κ0)〉

V1(κ0) = θ2
FOV〈δD(κ̂− κ0)|∇κ̂|〉

V2(κ0) = θ2
FOV

〈
δD(κ̂− κ0)

t̂it̂j∂i∂jκ̂

|∇κ̂|2

〉
(4.2.8)

Taking advantage of statistical isotropy one can show that, for generic two–dimensional

vector fields û, v̂ consistent with this assumption, the following identities hold

〈û〉 =
π

2
〈|ûx|〉 ; 〈û · v̂〉 = π〈|ûx|δD(ûy)û · v̂〉, (4.2.9)

The relations (4.2.9), applied to (4.2.8) with u = ∇κ and vi = ∂i∂jκ∂jκ/|∇κ|2, lead to the

expressions

V0(κ0) = θ2
FOV〈Θ(κ̂− κ0)〉 (4.2.10)

V1(κ0) =
π

2
θ2

FOV〈δD(κ̂− κ0)|∂xκ̂|〉 (4.2.11)

V2(κ0) = −πθ2
FOV〈δD(κ̂− κ0)δD(∂yκ̂)|∂xκ̂|∂2

y κ̂〉 (4.2.12)

The parametrization (4.1.10) of the K covariance matrix allows to explicitly calculate ex-

pectation values of estimators f which are local in κ, such as (4.2.10), (4.2.11) and (4.2.12).

As required in the series expansion (4.1.9), we need to calculate Gaussian expectation val-

ues of arbitrary α,ηηη, ζζζ derivatives of the particular local estimator we are considering. Al-

gebra on Gaussian integration leads to
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〈∂nαΘ(α− ν)〉G =
(−1)n−1

√
2π

e−ν
2/2Hn−1(ν) (4.2.13)

〈∂nα∂mηxδ
D(α− ν)|ηx|〉G =

Hm−2(0)

π

(
ση√

2

)1−m
e−ν

2/2Hn(ν) (4.2.14)

〈∂kα∂l1ηy∂
l2
ηx∂

m
ζyyδ

D(α− ν)δD(ηy)|ηx|ζyy〉G =

Hl1(0)Hl2−2(0)

(2π)3/2

(
ση√

2

)2−l1−l2−2m

e−ν
2/2[Hk+1(ν)δm0 −Hk(ν)δm1]

(4.2.15)

We defined the Hermite polynomials Hn as

H−1(x) ≡
√
π

2
ex

2/2erfc

(
x√
2

)
; Hn(x) ≡ ex

2/2

(
− d

dx

)n
e−x

2/2 ; H−2(0) ≡ 1

(4.2.16)

Expressions (4.2.13), (4.2.14) and (4.2.15), after some tedious algebra, lead to the pertur-

bative relation between MFs and moments of κ

Vk(κ0 = σ0ν) = Ake
−ν2/2 [V G

k (ν) + δV 1
k (ν) + δV 2

k (ν) +O(λ3)
]

(4.2.17)

In the notation introduced in equation (4.2.17), V G
k = Hk−1 is the Gaussian contribution to

the k–th MF and δV 1
k , δV

2
k are the corrections coming respectively from the O(λ), O(λ2)

non–Gaussianity in κ. For reference, the amplitudes Ak are given by

A0 =
θ2

FOV√
2π

; A1 =
σηθ

2
FOV

2
√

2
; A2 =

σ2
ηθ

2
FOV√
8π

(4.2.18)

[34] performed the calculations up to order O(λ2) and found that the knowledge of seven
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Figure 4.2: Comparison between the MFs measured from a sample of simulated fiducial κ
maps (from the IGS1 simulations, see Appendix) and the approximation based on pertur-
bation theory up to order O(M(4)) (or O(λ2)). We show the mean of the measured MFs
calculated over 1000 κ realizations (simulated with constant source redshift zs = 1 and
smoothed with θG = 0.5′) and the perturbative approach at Gaussian O(M(2)) order (blue)
and including skewness O(M(3)) (green) and kurtosis O(M(4)) corrections. The moments
µµµ have also been measured from the mean of the same 1000 κ realizations.
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Figure 4.3: Study of the convergence of the perturbation series based on equation (4.2.17).
We measure the degree of convergence using a ∆χ2 metric defined as ∆χ2 = (V meas

k −
V pert
k )TC−1

kk (V meas
k − V pert

k ), where V meas
k are the measured MFs, V pert

k are the approxi-
mated MFs at different orders in perturbation theory and Ckk is the Vk − Vk covariance
between different thresholds κ0, measured from simulations. We show results for the area
V0 (blue), perimeter V1 (green) and the Euler characteristic V2 (red) of the excursion sets.
Different line styles correspond to the different sized of the Gaussian smoothing windows
θG applied to the images.
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higher moments of κ is sufficient to calculate the corrections.

µ30 =
〈κ3〉
σ3

0

; µ31 = −3

4

〈κ2∇2κ〉
σ3

0σ
2
η

; µ32 = −3
〈|∇κ|2∇2κ〉

σ3
0σ

4
η

(4.2.19)

µ40 =
〈κ4〉c
σ4

0

; µ41 =
〈κ3∇2κ〉c
σ4

0σ
2
η

µ42 =
〈κ|∇κ|2∇2κ〉c

σ4
0σ

4
η

; µ43 =
〈|∇κ|4〉c
2σ4

0σ
4
η

(4.2.20)

We use the subscript c to indicate the connected component of the quartic momentsµµµ4. The

non–Gaussian corrections to the MFs can be expressed as

δV 1
k =

µ30

6
Hk+2 +

kµ31

3
Hk +

k(k − 1)µ32

6
Hk−2 (4.2.21)

δV 2
0 =

µ2
30

72
H5 +

µ40

24
H3

δV 2
1 =

µ2
30

72
H6 +

(
µ40 − µ30µ31

24

)
H4 −

1

12

(
µ41 +

3

8
µ2

31

)
H2 −

µ43

8

δV 2
2 =

µ2
30

72
H7 +

(
µ40 − µ30µ31

24

)
H5

−1

6

(
µ41 +

µ30µ32

2

)
H3 −

1

2

(
µ42 + 2µ43 +

µ31µ32

2

)
H1

(4.2.22)

Figures 4.2,4.3 show comparisons between measured MFs from our simulated κ images

(using estimators (4.2.2), (4.2.4) and (4.2.7)) and the O(λ2) perturbation series based on

equations (4.2.21), (4.2.22). We can clearly observe a departure between the measured MFs

profile and the moment–based approximation, even when non–Gaussian corrections up to

O(λ2) are taken into account. Figure 4.3 clearly shows that the λ power series converges

faster when a larger smoothing kernel is applied to the κ images, because of the mitigating
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effect because of the reduced non–Gaussianity that results from the smoothing procedure.

Large smoothing kernels, however, reduce the amount of information contained in WL data

because they erase meaningful characteristics in the image features from which ΛCDM

parameters are inferred. Because MFs and the first few moments of κ are not equivalent for

small smoothing scales, morphological descriptors have the potential to carry cosmological

information that moments, by themselves, are missing. This issue will be investigated

further in Chapter 5.

4.3 Peak counts

In the previous section we showed how morphological features in κ maps are related to

quadratic and higher–than–quadratic local moments of κ. In the limit of Gaussian fields,

MFs are completely characterized in terms of the two quadratic moments σ0, ση. If non–

Gaussianity is present, on the other hand, MFs contain information on arbitrarily high order

κ correlations. A similar reasonment can be applied to a different type of local κ feature,

such as the statistics of local maxima (which we will call peaks from now on) counts. In

this section we explore the usage of peak counts Npk as an image feature. A κ peak of

height κ0 can be identified at a location θθθp if the image gradient ηηη vanishes and the Hessian

matrix ζζζ is positive definite at this location. Following [35], we define the peak angular

density at an angular position θθθ as

npk(θθθ) =
∑
p

δD(θθθ − θθθp) = |ζζζ(θθθ)|δD(ηηη(θθθ)) (4.3.1)

In equation (4.3.1), the sum extends over all peaks in the map and the Jacobian determinant

is defined as |ζζζ| = ζxxζyy − ζ2
xy. If we are interested in knowing the expected number of
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peaks of a certain height κ0 = σ0ν in a κ image, we have to calculate the expectation value

of the local estimator

dNpk

dν
= θ2

FOV

〈
δD(α− ν)δD(ηηη)|ζζζ|Θ(|ζζζ|)Θ(Trζζζ)

〉
(4.3.2)

The product of Θ functions in (4.3.2) ensures that the extremum of κ is actually a maximum

and not a minimum or a saddle point. Note that we related the peak histogram to the expec-

tation value of a local estimator, which can be calculated in perturbation series using (4.1.9)

in the same fashion as we did for the MFs, although the calculation is more complicated.

In this section, we will limit ourselves to finding an expression for dNpk

dν
at Gaussian order.

For the sake of simplifying the calculations, it is useful to introduce a parametrization for

ζζζ in terms of three parameters t, u, φ as

ζζζ = −σζ

x2 + xε cos(2φ) xε sin(2φ)

xε sin(2φ)
x

2
− xε cos(2φ)

 (4.3.3)

In this parametrization x, ε are scalars under rotations (because σζx = −Trζζζ, σ2
ζx

2(1 −

4ε2)/4 = |ζζζ|) and φ transforms as an angle shift. With the help of rotational symmetry and

with the change of variable

u =
α− γx√

1− γ2
; γ =

σ2
η

σζ
, (4.3.4)

we can write the Gaussian part of the K likelihood (4.1.8) as

LG(K)dK =
8εx2

2π3σ2
η

exp

(
−u

2 + x2

2
− η2

σ2
η

− 4x2ε2
)
dudxdηηηdεdφ (4.3.5)
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The expectation value (4.3.2) can then be expressed in a more friendly way as

(
dNpk

dν

)
G

=
θ2

FOVσ
2
ζ

4

〈
δD
(
u
√

1− γ2 + γx− ν
)
δD(ηηη)x2(1− 4ε2)Θ(−x)Θ(1− 4ε2)

〉
G

(4.3.6)

Although tedious, the Gaussian integrals in (4.3.6) can be performed explicitly [35] to yield

(
dNpk(ν)

dν

)
G

=
(σηθFOV)2

2(2π)3/2γ2
e−ν

2/2G(γ, γν) (4.3.7)

G(γ, t) = (t2 − γ2)

[
1− 1

2
erfc

(
t√

2(1− γ2)

)]

+
t(1− γ2)√
2π(1− γ2)

+
e−t

2/(3−2γ2)√
3− 2γ2

[
1− 1

2
erfc

(
t√

2(1− γ2)(3− 2γ2)

)] (4.3.8)

Figure 4.4 shows a comparison between the peak histogram measured from one of our

simulated κ maps and the histogram predicted using the Gaussian approximation (4.3.7),

which makes use of the quadratic κ moments σ0, ση, σζ . We can clearly see a departure

of the measured histogram profile from the Gaussian approximation. The measured peak

histogram displays a high κ tail that the Gaussian formula (4.3.7) ignores. This could be

a hint that the peak histogram profile contains additional cosmological information than

quadratic κ moments, by themselves, miss. This issue will be investigated in Chapter 5.

4.4 Angular power spectrum

In the previous sections we discussed image features which are local, or can be expressed

as local estimators in κ. In this section we go beyond locality and focus on the information
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4.4. ANGULAR POWER SPECTRUM

Figure 4.4: A sample κ map (θFOV = 3.5 deg) with the locations of its peaks (identified
by the 8 nearest neighboring pixels) highlighted in red dots. The right panel shows the
peak number (blue) as a function of the peak height νσ0. The panel also shows the peak
histogram for a Gaussian κ field with the same power spectrum as the WL simulated one
(green) and the Gaussian prediction (red) for dNpk/dν obtained with equation (4.3.7).
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contained in larger scale correlations of κ. The most straightforward non local feature in κ

one can consider is the angular two–point correlation function defined defined by

ξκκ(α) = 〈κ̂(θθθ)κ̂(θθθ +ααα)〉 (4.4.1)

In the definition (4.4.1) the correlation function ξκκ depends on the magnitude α = |ααα| of

the angular lag ααα only because cosmic WL fields are statistically invariant under transla-

tions and rotations. Quadratic non–local correlations, such as the one defined by (4.4.1),

are better expressed in terms of the Fourier transform κ̃(`̀̀) as

〈
ˆ̃κ(`̀̀)ˆ̃κ(`̀̀′)

〉
= (2π)2δD(`̀̀ + `̀̀′)Pκκ(`) (4.4.2)

Translational invariance causes the Dirac delta to appear in (4.4.2) and rotational invariance

makes the angular power spectrum Pκκ depend on ` = |̀`̀| only. In the limit of full sky

coverage, we can relate ξκκ and Pκκ using both (4.4.1) and (4.4.2):

ξκκ(α) =

∫
d`̀̀

(2π)2
Pκκ(`)e

i`̀̀·ααα (4.4.3)

The relation (4.4.3) is valid in the flat sky limit, with spherical harmonic corrections kicking

in at small `. Under the assumption of statistical isotropy, a practical estimator for Pκκ is

obtained by replacing the expectation value in (4.4.2) with a Fourier space integral over the

multipoles with constant magnitude ` = |̀`̀|. One can show that, if the Fourier transform κ̃

is computed from a field of view of linear size θFOV, the estimator

P̂κκ(`) =
1

θ2
FOV

∫
d`̀̀′

2π`′

∣∣∣ˆ̃κ(`̀̀′)
∣∣∣2 δD (|̀`̀′| − `) (4.4.4)
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Figure 4.5: κ (blue) and ω (green, see equation (2.2.2)) angular power spectra, measured
from the average of 1024 realizations of a fiducial cosmology in a field of view of size
θFOV = 3.5 deg. The source galaxies were placed on a plane at zs = 2. For reference we
also show the auto–power spectra of Gaussian white shape noise (black) for three different
choices of the angular galaxy density ng = 15, 30, 45 galaxies/arcmin2. We applied a
smoothing factor e−`2θ2G to the power spectra, corresponding to a Gaussian window of size
θG = 0.5′.
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Figure 4.6: Measurement of the power spectrum diagonal covariance matrix in units of the
Gaussian prediction in equation (4.4.7). N` is defined to be `δ`bθ2

FOV/4π. We measured the
Pκκ covariance matrix from the same 1024 realizations we used in Figure 4.5, and adopted
two different binning choices: 100 uniformly spaced bins between ` ∈ [100, 10000] and
15 log–spaced bins between ` ∈ [100, 6000]. We show both the noiseless cases for linear
(blue) and log (green) and the case in which shape noise has been added (red) to the κ
images with a galaxy density of ng = 15 galaxies/arcmin2.
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converges to the real Pκκ if θFOV is sufficiently large compared to the κ angular correlation

scale. In Figure 4.5 we show sample behaviors of the WL κ and ω power spectra mea-

sured from our simulations, and we compare them with shape noise power spectra. In the

Gaussian limit, we can also quantify the scatter of the estimator (4.4.4) by evaluating the κ̃

4–point functions with Wick’s theorem. In the limit of `θFOV � 1 we can write

〈
(P̂κκ(`)− Pκκ(`))(P̂κκ(`′)− Pκκ(`′))

〉
G

=
4πP 2

κκ(`)

`θ2
FOV

δD(`− `′) (4.4.5)

Looking at (4.4.5), we immediately conclude that, in the Gaussian case, the κ power spec-

trum covariance matrix is diagonal and is inversely proportional to the area of the field of

view and to the number of multipoles ∼ ` that fall inside θFOV. In a more realistic case, in

which we measure the value of Pκκ smeared over a multipole bin of size δ`bin using

P̂ bin
κκ (`b) =

1

δ`bin

∫ `b+δ`bin/2

`b−δ`bin/2
d`P̂κκ(`), (4.4.6)

the estimator scatter assumes the familiar form

〈
δP̂ bin

κκ (`b)δP̂
bin
κκ (`b′)

〉
G

=
4π[P bin

κκ (`b)]
2

`bδ`binθ2
FOV

δbb′ (4.4.7)

Figure 4.6 shows that (4.4.6) is a good approximation to the real power spectrum covariance

matrix if one uses linear ` binning, but large non–Gaussian effects dominate at large `when

one uses log–spaced multipole bands [36, 25]. Figure 4.6 also shows that the Gaussian

approximation is exact when shape noise is added to the κ images. This is reasonable

since the shape noise we introduce is Gaussian distributed and its large covariance tends to
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Figure 4.7: Difference between the full κ power spectrum, obtained from ray–tracing, and
its Born approximated version. We show the measured power residuals (blue), and the
Born–geodesic (green), Born–lens–lens (red) cross spectra averaged over 8192 field of
view realizations (zs = 2, θFOV = 3.5 deg) of a fiducial ΛCDM model.

dominate the WL signal on small scales. In the next sub–section we investigate the validity

of the Born approximation (2.2.13) in predicting Pκκ.

4.4.1 Born approximation

Since quadratic features, both in real and Fourier space, are the primary investigation tools

for cosmological parameter inference in WL, we investigated how accurately the Born

approximation (2.2.13) predicts the κ power spectrum. If we define

〈
ˆ̃κ(i)(`̀̀)ˆ̃κ(j)(`̀̀′)

〉
= (2π)2δD(`̀̀ + `̀̀′)P i,j

κκ (`) (4.4.8)

where κ(i) is an O(Φi) contribution to κ, we can express the κ power spectrum in a power

series in Φ. The first few terms of this series are
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Pκκ = P 1,1
κκ + 2<(P 1,2−ll

κκ + P 1,2−gp
κκ ) +O(Φ4) (4.4.9)

The first non–trivial corrections to the Born approximated power spectrum are of O(Φ3)

and, as Figure 4.7 shows, they can account for the residuals Pκκ−P 1,1
κκ . The Born–geodesic

cross terms, which trace local gradients in the cosmic density field, dominate over the

Born–lens–lens terms, which are proportional to the non–local couplings of the tidal field.

Depending in how big the statistical error on the measured P̂κκ is, the Born approximation

may induce biases when used in the inference of cosmological parameters. This could

in principle be an issue for large scale surveys since, as seen in (4.4.7), the variance in

the power spectrum measurement is inversely proportional to the sky area covered by the

survey. We will investigate WL constraints on ΛCDM parameters in Chapters 5,6 and 7.

4.5 Convergence moments

Because the WL κ field is non–Gaussian, higher order Fourier statistics contain statistical

information that the power spectrum ignores. We can define a n–point correlation function

of κ, both in real and Fourier space, as

ξ(n)
κ = 〈κ(θθθ1)...κ(θθθn)〉 (4.5.1)

〈κ̃(`̀̀1)...κ̃(`̀̀n)〉c = (2π)2nδD(`̀̀1 + ...+ `̀̀n)P (n)
κ (`̀̀1, ..., `̀̀n) (4.5.2)

As previously noted, the Dirac delta function appears in (4.5.2) because of invariance under

translations. The complete Fourier profile of the multi–spectra P (n)
κ can be computationally

expensive to measure from high resolution κ images (the computational cost scales roughly
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as O(Nn
R), where NR is the number of pixels in the image) but, if we are interested in

selected multipole features only, we might be able to measure a finite, small number of

kernel projections of P (n)
κ and still get some insight on the cosmological information carried

by the κ non–Gaussianity. In order to perform the projection, we smooth the κ image with

a Gaussian window of size θG and choose an arbitrary function of the multipoles µ̃. We

define

µ
(n)
i (θG) =

∫
d`̀̀1...d`̀̀nδ

D(`̀̀1 + ...+ `̀̀n)
[
µ̃

(n)
i P (n)

κ

]
(`̀̀1, ..., `̀̀n)e−θ

2
G(`21+...+`2n)/2 (4.5.3)

If µ̃(n)
i is polynomial in the multipoles, µ(n)

i is a connected local moment of the θG–

smoothed convergence. Different choices of θG, µ(n)
i probe different features in the κ

multi–spectra at low computational cost. The only operations that need to be performed

are the smoothing convolution and the measurement of local expectation values, which are

cheap operations with complexity O(NR logNR), O(NR) respectively. Motivated by the

discussion in § 4.2.1 about the relation between morphological features and κ moments, in

this work we focus our attention on the multi–spectra projections defined by the following

nine polynomials

µ̃
(2)
0 = 1 ; µ̃

(2)
1 = `̀̀1 · `̀̀2 (4.5.4)

µ̃
(3)
0 = 1 ; µ̃

(3)
1 = `2

3 ; µ̃
(3)
2 = `2

3(`̀̀1 · `̀̀2) (4.5.5)

µ̃
(4)
0 = 1 ; µ̃

(4)
1 = `2

4 ; µ̃
(4)
2 = `2

4(`̀̀2 · `̀̀3) ; µ̃
(4)
3 = (`̀̀1 · `̀̀2)(`̀̀3 · `̀̀4) (4.5.6)

80



4.5. CONVERGENCE MOMENTS

Note that, with these choices, the quadratic projections defined by (4.5.4) correspond to

σ2
0 and σ2

0σ
2
η respectively. The cubic and quartic projections defined by (4.5.5), (4.5.6), on

the other hand, are equivalent to the local κ moments defined in (4.2.19), (4.2.20) modulo

normalization factors. The polynomial nature of the kernels µ̃(n)
i , make it so µ(n)

i capture

local features in the convergence maps. By varying and combining different smoothing

scales θG, one can hope to probe different angular scales in the multi–spectra, hence gaining

sensitivity to large scale angular correlations.

4.5.1 Born approximation

In the same flavor as § 4.4.1, in this sub–section we study the accuracy of the Born ap-

proximation (2.2.13) in predicting the first few moments of κ, defined by the projections in

(4.5.4), (4.5.5) and (4.5.6). Since these features are polynomial in Φ, it is easy to isolate the

main contribution to µ(n)
i as O(Φn). The first non trivial correction is of order O(Φn+1).

For the κ skewness and kurtosis we have

κ3 =
(
κ(1)
)3

+ 3
[(
κ(1)
)2
κ(2−ll) +

(
κ(1)
)2
κ(2−gp)

]
+O(Φ5) (4.5.7)

κ4 =
(
κ(1)
)4

+ 4
[(
κ(1)
)3
κ(2−ll) +

(
κ(1)
)3
κ(2−gp)

]
+O(Φ6) (4.5.8)

We show the residuals between the results obtained with ray–tracing and the Born approx-

imation in Figure 4.8, which compares the difference δκn = κn −
(
κ(1)
)n to the largest

non trivial post–Born corrections contained in (4.5.7), (4.5.8). The Figure shows that the

first post–Born corrections can fully account for the residuals and, contrary to the power

spectrum case, for higher κ moments the Born–geodesic and Born–lens–lens terms are

comparable in magnitude. Figure 4.8 also shows that, for the sake of predicting κ mo-
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Figure 4.8: Comparison between the κ skewness and kurtosis obtained with full ray–tracing
and with the Born approximation. With the solid lines we show the residuals between the
Born result and the ray–tracing (blue), the geodesic truncated (green) and the lens–lens
truncated (red) kappa. The dashed line show the first post–Born corrections in equations
(4.5.7), (4.5.8) for the geodesic (green), lens–lens (red) cross terms, and the sum of the two
(blue). We plot the results as a function of the smoothing scales θG, averaging over 8192
realizations of the field of view in a fiducial ΛCDM model.
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ments, it is not advisable to truncate the κ power series in Φ at O(Φ2). The reason is that,

by doing so, large numerical contributions to the moments, coming from O
((
κ(2−gp)

)2
)

terms and higher are not canceled by terms of order O
(
κ(3)κ(1)

)
, which have the same

magnitude [37]. Ray–tracing is hence required to accurately improve the Born approxima-

tion. The issue whether the Born–approximated κ moments leads to biased inferences on

ΛCDM parameters will be investigated in Chapter 7.

4.6 Summary

In this Chapter we gave an overview of image features (which is by no means exhaustive)

that can be measured from κ pixelated images. We considered features which are local in κ

(such as moments) or that can be expressed as expectation values of local κ estimators. We

have also considered Fourier space features, such as the κ angular power spectrum, that are

non–local and require knowledge of κ over the entire field of view to be measured. This

can cause issues in WL analyses, as we will see in Chapter 6: masked regions in the field

of view lead to biased measurements of the power spectrum, which can produce biases

in parameter inferences if accounted for in feature forward models. Local estimators, on

the other hand, are well behaved even in the presence of masks, provided that one excludes

regions nearby the mask boundaries when calculating the expectation values. Following the

literature, we examined classes of features which are not polynomial in κ, such as MFs and

peak count histograms, showing in both cases that a relationship with κ local moments can

be established via perturbation theory. The fact that the first few perturbative orders do not

reproduce the features well lead us to claim that the angular power spectrum, κ moments

(which probe selected polygon shapes in κ multi–spectra), morphological descriptors and
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peak counts contain complementary information about cosmology. In the next Chapter we

will focus on how these κ features can be used to infer the values of ΛCDM parameters, as

well as their confidence intervals.
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Chapter 5

Cosmological parameter inference

In this Chapter we introduce the Standard Model parameter inference techniques used in

this work. The parameter inference procedure from WL observations starts with the con-

struction of κ images from galaxy shear catalogs. Image features d are then extracted from

the reconstructed images. When a forward model d(p) that relates features to ΛCDM pa-

rameters p is specified, an estimate of the parameters p̂ can be derived from the measured

feature d̂ in a Bayesian fashion. In this Chapter we review the Bayesian probabilistic frame-

work and we study parameter constraints from WL using the image features discussed in

Chapter 4. We also discuss some of the numerical and physical effects that lead to the

degradation of confidence intervals, suggesting possible mitigation techniques.

5.1 Bayesian formalism

In this section we describe the Bayesian probabilistic framework on which we base the

ΛCDM parameter inference. We indicate a Nd–dimensional image feature as d and a

Nπ–dimensional tuple of ΛCDM parameters (see Table 1.1) as p. We also denote feature
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CHAPTER 5. COSMOLOGICAL PARAMETER INFERENCE

estimates from a simulated κ field of view as d̂, feature measurements from an actual

observation as d̂obs and the resulting parameter estimates as p̂. We assume the existence of

a forward model d(p), which can be calculated using our WL simulation pipeline described

in § 3.4 or, in special cases such as for the κ power spectrum, using analytical codes like

NICAEA [38, 39]. According to Bayes theorem, the likelihood L(p̂|d̂obs) of a parameter

estimate p̂ given an observation d̂obs is given by

L(p̂|d̂obs,d(p)) =
L(d̂obs|p̂,d(p))Π(p̂)

L(d̂obs)
(5.1.1)

In equation (5.1.1), Π encodes prior information on the parameters coming from indepen-

dent probes independent from WL (such as CMB experiments) and L(d̂obs) is the overall

likelihood of the observation, which plays the simple role of a p–independent normalization

factor in the parameter likelihood (5.1.1). In the prosecution of this work this normalization

factor will be ignored. We assume a Gaussian feature likelihood

L(d̂obs|p̂,d(p)) =
1

(2π)Nd/2|C|1/2
exp

(
−1

2
(d̂obs − d(p))TC−1(d̂obs − d(p))

)
,

(5.1.2)

where C is the p–independent feature–feature covariance matrix. The Gaussian assump-

tion for the data likelihood is justified by the Central Limit Theorem because measured

image features are averaged over a large number of θFOV = 3.5 deg fields of view (13 for

CFHTLenS and over 1000 for LSST). We do not discuss covariance matrix dependence on

p in this work, reserving the topic for future investigation.

Parameter confidence intervals can be obtained looking at surfaces in p space with

constant L(p̂). We define an Nσ confidence interval to be the region in p space in which

86



5.1. BAYESIAN FORMALISM

L > LN . The likelihood confidence levels are defined as

∫
L>LN

L(p̂|d̂obs,d(p))dp̂ =
1√
2π

∫ N

−N
e−x

2/2dx (5.1.3)

Note that this definition of Nσ confidence intervals (see Figure 5.1 for a visual example)

corresponds to the commonly accepted one when L(p̂) is a multivariate Gaussian in p̂. In

this case, calling p̂0 the location of the likelihood peak, the matrix Σ defined by

(
Σ−1

)
αβ

= −
(
∂2 logL(p̂)

∂p̂α∂p̂β

)
p̂=p̂0

, (5.1.4)

is the covariance of the parameter estimate. If the parameter likelihood is not a multivariate

Gaussian, we can still use the peak location p̂0 and the matrix (5.1.4) as estimates of the

parameters and of their covariance matrix, although a complete characterization of the pa-

rameter space through the confidence intervals defined in (5.1.3) is preferred. Confidence

intervals can be calculated by drawing samples from L(p̂) using Markov Chain Monte

Carlo (MCMC) techniques, which are implemented by many user–friendly software pack-

ages, such as emcee [40]. An example of 1,2 and 3σ confidence contours on the parameter

doublet (Ωm, σ8) is shown in Figure 5.1.

5.1.1 Fisher matrix approximation

Parameter inference becomes simpler if the forward model d(p) is linear. Linearity can

be safely assumed if confidence intervals are localized around the peak of the likelihood,

which is the case for large scale surveys. Under the linearity assumption, we can write

d(p) = d0 + M(p− p0) +O(|p− p0|2). (5.1.5)
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Figure 5.1: Sample 1 (blue), 2 (green) and 3σ (red) example confidence contours on
(Ωm, σ8). The gray scale refers to the value of the parameter likelihood L(p̂).
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Assuming a flat prior Π(p̂) and substituting (5.1.5) into (5.1.2) we get, for the p–dependent

part of the likelihood

− 2 logL(p) =
[
d̂obs − d0 −M(p− p0)

]T
Ψ
[
d̂obs − d0 −M(p− p0)

]
(5.1.6)

We used the notation Ψ = C−1. We can estimate the peak location of the likelihood p̂0

and its covariance Σ from (5.1.6) using (5.1.4):

p̂0 = p0 +
(
MTΨM

)−1
MTΨ

(
d̂obs − d0

)
(5.1.7)

Σ = F−1 ≡
(
MTΨM

)−1
(5.1.8)

Equations (5.1.7), (5.1.8) take the name of Fisher matrix approximation and F ≡MTΨM

is usually referred to as Fisher information matrix. When prior information on the param-

eters is available, the estimates for the likelihood peak and covariance matrix have to be

modified. If the prior is a multivariate Gaussian with distribution

Π(p) =

√
|FΠ|

(2π)Nπ
exp

(
−1

2
(p− pΠ)TFΠ(p− pΠ)

)
, (5.1.9)

we can write

p̂0 = (F + FΠ)−1
[
FΠpΠ + Fp0 + MTΨ(d̂− d0)

]
(5.1.10)

Σ = (F + FΠ)−1 (5.1.11)
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Equation (5.1.11) states that, if the parameter prior is independent from the WL observa-

tion, inverse parameter covariances have to be added in quadrature. If the parameter like-

lihood and prior peak at the same location p0 = pΠ, equation (5.1.10) reduces to (5.1.7)

with a modified Fisher information matrix F + FΠ.

5.2 Error degradation induced by noise in the covariance

matrix

In the previous derivation of parameter estimates (5.1.7) and covariances (5.1.8), we have

assumed perfect knowledge of the feature–feature covariance matrix C and of its inverse

Ψ. Although smooth models exist for the covariance matrix of the κ power spectrum (see

(4.4.5) for example), the same is not true for the higher order features described in Chapter

4. When such smooth models are not readily available one can obtain an estimate Ĉ of

C from simulations. The estimate can then be used to calculate an approximate feature

likelihood (5.1.2). If one choses this way to proceed, the noise in the estimator Ĉ, Ψ̂

carries over to the parameter estimate p̂0 and covariance Σ, which is then only available as

a noisy estimate Σ̂. If simulations and observations are independent from each other, the

parameter estimate p̂0 is unbiased (within the limits of the linear approximation (5.1.5)).

The parameter covariance estimator defined by

Σ̂1 = F̂−1, (5.2.1)

on the other hand, is a biased estimate of Σ, as we will see later in the Chapter. The

unbiased version of (5.2.1) is the correct estimation of the error–bar to assign to p̂0 only if
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the scatter of the estimator (5.1.7) is equal to Σ. We will see, unfortunately, that this is not

true. With the simplifying assumption that 〈d̂obs − d0〉 = 0, the scatter of (5.1.7) is given

by

〈
δp̂0δp̂

T
0

〉
=
〈
F̂−1MT Ψ̂(d̂obs − d0)(d̂obs − d0)T Ψ̂MF̂−1

〉
. (5.2.2)

In equation (5.2.2), the expectation value has to be taken with respect of both the observa-

tions and the simulations, which are both affected by noise but are uncorrelated. To have

an idea of the magnitude of (5.2.2), we can take the expectation value over the observation

and focus ourselves on the the noise introduced exclusively by the simulations. We will use

the fact

〈
(d̂obs − d0)(d̂obs − d0)T

〉
= C (5.2.3)

to produce a noisy estimator of the p̂0 scatter, which we call Σ̂2. The latter quantity is

defined as

Σ̂2 = F̂−1MT Ψ̂CΨ̂MF̂−1 (5.2.4)

In the next sub–section we are going to show how the expectation values of (5.2.1) and

(5.2.4) over the simulations can be calculated explicitly under a Gaussianity assumption.

5.2.1 Covariance matrix estimation

In order to produce estimates of the feature–feature covariance matrix C, we use our WL

simulation pipeline (described in Chapter 3.4), whose products are pseudo–independent
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realizations of κ in a WL field of view. We measure the feature d̂r from each simulated

image using the techniques described in Chapter 4 and we produce an estimator for the

covariance matrix Ĉ based on simulated ensembles of Nr image realizations:

d̂mean =
1

Nr

Nr∑
r=1

d̂r (5.2.5)

Ĉ =
1

n

Nr∑
r=1

(
d̂r − d̂mean

)T (
d̂r − d̂mean

)
(5.2.6)

We indicated the effective number of degrees of freedom in the ensemble as n = Nr − 1.

This effective number is smaller than Nr because the mean feature d̂mean is not known and

has to be estimated from the ensembles themselves. If the feature estimate d̂r is drawn from

a multivariate Gaussian distribution with covariance matrix C, the covariance estimate Ĉ is

distributed according to the Wishart probability density [41, 42, 43]. A functional form for

the Wishart density function, L(Ĉ|C, n), can be obtained from its characteristic function

φ(J) =
〈
eiTr(JĈ)

〉
(5.2.7)

We can derive an expression of L(Ĉ|C, n) from φ(J) performing an inverse Fourier trans-

form in matrix space (much like the inversion described in (4.1.6)). The characteristic

function φ can be evaluated from the moments of the Wishart distribution, which are easily

expressed in terms of C and n via a straightforward though tedious procedure based on

Wick’s theorem. After the smoke clears we get (see [41] for the details)

φ(J) =

∣∣∣∣1Nd×Nd − 2iJC

n

∣∣∣∣−n/2 (5.2.8)
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The inverse Fourier transform leads to the functional form of the Wishart density function

L(Ĉ|C, n) =W(C, Ĉ, n), with

W(C, Ĉ, n) =

(
nnNd/2|C|−n/2|Ĉ|(n−Nd−1)/2

2nNd/2ΓNd(n/2)

)
exp

(
−n

2
Tr(ĈC−1)

)
(5.2.9)

The generalized gamma function ΓN is defined via an integral over the positive semidefinite

N ×N symmetric matrices as

ΓN(x) =

∫
X>0

dX|X|x−(N+1)/2e−TrX (5.2.10)

We can use the functional form of the Wishart density (5.2.9) to derive a closed formula

for the distribution of the estimate of the inverse Ψ̂ = Ĉ−1. This can be done by means of

a change of variables in matrix space. Following [41], we obtain the result L(Ψ̂|Ψ, n) =

W−1(Ψ̂,Ψ, n), with

W−1(Ψ̂,Ψ, n) =

(
nnNd/2|Ψ|n/2|Ψ̂|−(n+Nd+1)/2

2nNd/2ΓNd(n/2)

)
exp

(
−n

2
Tr(ΨΨ̂−1)

)
(5.2.11)

Using the expression (5.2.11), it can be shown (see [43]) that the estimate of the inverse

covariance Ψ̂ is biased according to

〈
Ψ̂
〉

=
nΨ

n−Nd − 1
(5.2.12)

Because the moments of the probability distribution of any square sub–matrix of Ψ̂ can be

expressed in terms of the relevant elements of Ψ, n and the combination γ = (n−Nd−1)/2
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(see again [43]), it can be shown that the rescaled Fisher information estimate F̂′, defined

by

F̂′ =
(n+Nπ −Nd)F̂

n
, (5.2.13)

is distributed as L(F̂′|F′, n,Nπ, Nd) = W−1(F̂′,F′, n + Nπ − Nd). This fact leads im-

mediately to the conclusion that parameter error bar estimates based on (5.2.1) are biased

according to

〈
Σ̂1

〉
=

(
1 +

Nπ −Nd

n

)
Σ (5.2.14)

This bias can easily be easily mitigated by applying a suitable correction factor (suggested

in equation (5.2.14)) to the parameter covariance estimator (5.2.1). This procedure can

be used to estimate parameter error bars in an unbiased fashion by relying only on the

simulations, can hence be used to obtain approximate forecasts for parameter contours.

When analyzing a real observation, however, we are left with a parameter estimate p̂0

which obtained from the peak of the likelihood. As we are going to see, p̂0 is drawn from

a distribution whose width is larger than Σ. This increased scatter originates from the fact

that the feature–feature covariance estimate is noisy: even if the Ĉ estimator is unbiased,

the estimate of the peak scatter Σ̂2, defined in (5.2.4), is not. Unlike the case for Σ̂1, the

expectation value of Σ̂2 cannot be calculated exactly and needs to be approximated. We

tackle this issue in the next sub–section.
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5.2.2 Perturbative calculation of the estimate scatter

It is not possible to calculate the expectation value of (5.2.4) analytically because the ex-

pression contains both Ψ̂ and F̂−1. In order to evaluate the behavior of the scatter Σ̂2 with

Nd, Nr, we adopt a perturbative approach in the quantity δΨ̂, defined by

Ψ̂ = Ψ + δΨ̂ (5.2.15)

With this definition, the expression (5.2.4) can be expanded in a power series in δΨ̂. If the

moments of the inverse Wishart distribution are known, we can use them to calculate 〈Σ̂2〉

at arbitrary orders in δΨ̂. Using the notation

δF̂ = MT δΨ̂M, (5.2.16)

we can write

Σ̂2 = (F + δF̂)−1MT (Ψ + δΨ̂)C(Ψ + δΨ̂)M(F + δF̂)−1 (5.2.17)

The series expansion for (F + δF̂)−1, which is given by

(F + δF̂)−1 =
∞∑
k=0

(−1)k(F−1δF̂)kF−1, (5.2.18)

provides a straightforward, although algebraically tedious, way to express (5.2.17) at the

desired order in δΨ̂. [43] showed that a series expansion in δΨ̂ is roughly equivalent

to a perturbation series in 1/Nr, with higher connected moments of the inverse Wishart

distribution corresponding to higher powers in 1/Nr. We need to know the moments of

W−1 up to quartic order [25] to express the expectation value of (5.2.17) at O(1/N2
r ). We
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quote the expressions for theW−1 moments from [43]:

〈
δΨ̂IδΨ̂J

〉
=

ΨIΨJ + γΨ{IΨJ}
(γ − 1)(2γ + 1)

(5.2.19)

〈
δΨ̂IδΨ̂JδΨ̂K

〉
=

γ2Ψ{IΨJΨK}
(γ − 1)(γ − 2)(γ + 1)(2γ + 1)

(5.2.20)

〈
δΨ̂IδΨ̂JδΨ̂KδΨ̂L

〉
=

γ3(2γ2 − 5γ + 9)Ψ{IΨJ}Ψ{KΨL}
(γ − 1)(γ − 2)(γ − 3)(2γ − 1)(γ + 1)(2γ + 1)(2γ + 3)

(5.2.21)

The adopted notation is the following: we use a capital letter I = (i1, i2) to indicate a pair

of indexes i1, i2, and we use curly braces to indicate a symmetrization in the indexes

Ψ{IΨJ} = Ψi1j1Ψi2j2 + Ψi1j2Ψi2j1 (5.2.22)

In equations (5.2.19), (5.2.20) and (5.2.21), we kept only the terms which are of order

O(1/N2
r ). Looking at the structure of the expression (5.2.17) and at the expressions for

the inverse Wishart moments, we conclude that the expectation value 〈Σ̂2〉 must be be the

sum of terms in the form fa(Nd, Nπ)Σ/Na
r , where fa a polynomial of Nd, Nπ. Each of

these polynomials contains at least one factor proportional to Nd −Nπ since, if Nd = Nπ,

〈Σ̂2〉 = Σ. After expanding (5.2.17) at quadratic, cubic and quartic order in δΨ̂ and

carrying out the calculations, we can separate the contributions to 〈Σ̂2〉 due to O(δΨ̂n)

terms as

(δΨ̂)2 → γ(Nd −Nπ)Σ

(γ − 1)(2γ + 1)
(5.2.23)

(δΨ̂)3 → −4(Nd −Nπ)(1 +Nπ)Σ

N2
r

(5.2.24)
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(δΨ̂)4 → 3(Nd −Nπ)(1 +Nπ)Σ

N2
r

(5.2.25)

Combining (5.2.23), (5.2.24) and (5.2.25) we finally get

〈
Σ̂2

〉
=

(
1 +

Nd −Nπ

Nr

+
(Nd −Nπ)(Nd −Nπ + 2)

N2
r

)
Σ +O

(
1

N3
r

)
(5.2.26)

The result (5.2.26) has an important consequence: although parameter error bars forecast

from simulations via (5.2.14) are unbiased, the scatter of the likelihood peak p̂0 is larger

than Σ by a factor of ∼ 1 +Nd/Nr. This is always the case when we use a noisy estimate

of feature covariance matrix obtained with (5.2.6). This means that, for high dimensional

image features, estimation noise in the covariance matrix severely degrades parameter es-

timates, and the error bar forecast from simulations is an under–estimate. [42] proposed an

empirical formula for 〈Σ̂2〉 which accurately reproduces numerical estimates of the param-

eter degradation:

〈
Σ̂2

〉
empirical

=

(
Nr − 2

Nr +Nπ −Nd − 2

)
Σ (5.2.27)

Note that (5.2.27) reduces to (5.2.26) when expanded up to order O(1/N2
r ). Figure 5.2

shows the results of a numerical experiment we performed using ensemble bootstrapping.

We measured the constraint degradation of the Dark Energy equation of state parameter

w0. The Figure shows that, for ratios Nd/Nr close to unity, the scatter of the w0 estimate

is be significantly bigger than the forecast covariance Σ (see [44, 25]). This numerical

degradation brings up the necessity of dimensionality reduction: high dimensional features

likely contain more information about cosmology but, since their covariance matrix has
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Figure 5.2: Expectation value of the w0 peak scatter Σ̂w0w0 as a function of the number
of pseudo–independent realizations Nr used to measure the feature covariance matrix. We
consider a variety of features with different dimensionality, including the κ power spectrum
and peak counts. We show the numerical results obtained with a bootstrapping procedure
(points), the O(1/Nr), O(1/N2

r ) perturbation theory predictions from equation (5.2.26)
(dashed and thin solid lines respectively) and the empirical result from equation (5.2.27)
(thick solid lines). The asymptotic parameter covariance Σ∞, which coincides with the
true covariance Σ, has been estimated with a linear regression of 〈Σ̂〉2 versus 1/Nr using
the large Nr tail.
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to measured from simulations, constraint degradation results in larger error bars. A good

compromise is to find a way to construct low dimensional features which retain as much

information on cosmology as possible. We propose some possible recipes for this non

trivial task later in the Chapter.

5.3 Pseudo–independence of realizations

The analytical results illustrated in § 5.1, § 5.2 are based on the assumption that the real-

izations in the κ ensembles are independent. Because these ensembles are built with the

sampling procedure described in § 3.2.3, which makes use of Ns independent N–body

simulations to construct a large number Nr � Ns of WL fields, the realizations are all in-

dependent. Moreover, if Ns is small, it is not guaranteed that cosmic variance is sampled in

an unbiased way. Given the size (c/H0 ∼ 3 Gpc) of the present Hubble horizon, this might

be an issue for our simulations, which have a box size of Lb ≈ 250 Mpc/h. The effect

of biased sampling is evident in Figure 5.3, which shows the distribution of the κ power

spectrum at selected ` values over different realizations. We can clearly see that, if the WL

sampling is based on a single N–body simulation (Ns = 1), the peak of the distribution of

Pκκ varies among ensembles. Different initial conditions for the N–body simulation lead

to different estimates of the small scale power spectrum (` & 1000). The same distinction

is not evident on larger scales (` . 400). Figure 5.3 also shows that, with the chosen box

size, Ns = 5 is sufficient to obtain an unbiased sample of the κ power spectrum up to

` ≈ 5000. Another aspect of biased feature sampling is shown in the top panel of Figure

5.4, which shows the mean of selected features as a function of the number of independent

simulations Ns. The plot shows that for features that trace density fluctuations in the linear
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Figure 5.3: Distribution of the κ power spectrum at four distinct values of `. We plot
the histogram of 1000 Pκκ realizations in ensembles built with different Ns (solid colored
lines). We also show the distribution of ∼ 105 Pκκ realizations in an ensemble built from
a single N–body simulation (Lb = 240 Mpc/h) (dashed black line). The simulations on
which this Figure is based are taken from the CovarianceBatch set (see Appendix).
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Figure 5.4: Top panel: mean feature measured from Nr = 1000 realizations drawn from
ensembles build with varying Ns. We show the κ power spectrum measured at three se-
lected ` values and the peak counts of three different heights κ0 (colored lines). The mean
feature is plotted in units of the statistical error measured from the ensemble variance. We
also draw a dashed black line which shows the tolerance of 10% of the statistical error.
Bottom panel: asymptotic parameter variance on w0 plotted against the number of inde-
pendent simulations Ns used to construct the WL ensembles. The asymptotic variance has
been obtained with a linear regression of the bootstrapped 〈Σ̂2〉 versus 1/Nr for large Nr.
The trends are shown in units of the mean over Ns for two different binning choices of the
power spectrum (black, red) and for the peak counts (green). The simulations on which
this Figure is based are taken from the CovarianceBatch set (see Appendix).
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Figure 5.5: Degradation in the w0 constraint as a function of Nr for different choice of fea-
tures. The features measured from ensembles built with Ns = 1. The asymptotic variance
Σw0w0,∞ was estimated using the value of 〈Σ̂2〉 at Nr = 128, 000. We show the trends for
small (black) and large (blue) scale power spectra and large threshold peak counts for non–
smoothed (green) and 1′ smoothed (red) κ images. The simulations on which this Figure is
based are taken from the CovarianceBatch set (see Appendix).

regime, such as power spectra at small ` and low height peaks, as few as Ns = 2 simula-

tions (with Lb = 240 Mpc/h) are sufficient for the bias to be within 10% of the statistical

error. On the contrary, for features that trace the non–linear cosmic density such as power

spectra at high ` and high peaks, the required number of N–body simulations (for the same

0.1σ reference tolerance) is of the order of 10. The lower panel of Figure 5.4 shows that

the pseudo–independence of κ realizations at small Ns does not affect the estimation of the

asymptotic parameter variance Σ, which is correctly obtained at Ns = 2 already (modulo

statistical fluctuations).

If Ns = 1, the WL realizations cannot be considered all independent, as Figure 5.5
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shows. The Figure highlights the fact that, when the WL sampling is based on a single

N–body simulation, features measured from the κ ensemble start to be correlated for large

Nr. Regardless of which feature one considers, the error bar degradation 〈Σ̂2〉 − Σ be-

haves asymptotically as 1/Nr in the limit of independent realizations. What our numerical

experiment shows, on the other hand, is a flattening of the trend at high Nr, hinting to cor-

relations among the realizations in the ensemble. The 1/Nr behavior is broken at different

Nr depending on which feature we are looking at. Large scale κ power spectra drawn from

a single box can be considered independent for Nr < few × 103, while non–linear statis-

tics, such power spectra at high ` and peak counts, are independent up to Nr < few × 104.

These numbers should be interpreted as orders of magnitude and are referred to the size of

the boxes Lb = 240 Mpc/h used in this work. Different box sizes will likely modify the

scale Nr on which deviations from the 1/Nr behavior start to appear [45, 25].

5.4 Dimensionality reduction

In the previous sections we discussed how noise in the feature covariance matrix degrades

the inference of cosmological parameters. A way to mitigate this effect (which is expressed

by equations (5.2.26) and (5.2.27)) is to use a large number Nr of independent WL realiza-

tions. In section § 5.3, however, we saw that there is a limit on the number of independent

realizations one can generate from a singleN–body simulation. Because the degradation in

the error bars, at first order, is proportional to the feature dimensionalityNd, techniques that

capture the same cosmological information with a smaller number of dimensions Nc < Nd

assume particular relevance. In this section we will explore one of such techniques, which

takes the name of Principal Component Analysis (PCA) [46]. PCA projects image features
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onto a lower dimensional space which hopefully retains most of the original information.

We indicate with D the NM ×Nd feature matrix, in which each of the NM rows represents

an image feature in a different ΛCDM model. We perform a SVD decomposition [26, 46]

of D by writing it in the form

D = LΛR (5.4.1)

where L is NM ×K, R is K × Nd and Λ is a diagonal K × K matrix. We adopted the

notation K = min(Nd, NM). The diagonal components of Λ = (Λ1, ...,ΛK), assumed

sorted from biggest to smallest, take the name of singluar values and represent the variance

of the coordinates defined by the basis vectors in R over the NM models. The idea behind

PCA is to project the feature space onto the first Nc < Nd basis vectors, defined as the

rows of R, which have the largest Λi. The remaining coordinates are discarded, as they

are associated with numerical noise with negligible information about cosmology. Because

Nd components of the feature vector can each have a different scale (think about Pκκ for

example), in order not to exclude some of them because of their measure units, a whitening

operation is usually performed before the SVD. The whitened feature matrix DW is defined

to be

DW
md =

Dmd − µd
σd

(5.4.2)

In equation (5.4.2), we introduced Nd arbitrary location and scale parameters µd, σd, which

re–center and normalize D so that each dimension has the same magnitude. Popular

choices for µd, σd are, respectively, the mean and standard deviation of the rows of D

[46]. After the whitening operation, we perform the SVD of DW and calculate the singu-

lar values Λ and the basis vectors R. We then select the Nc biggest singular values and
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Figure 5.6: 1σ constraint on w0 as function of the number of PCA components Nc used
in the projection. We show the case for the κ power spectrum (top left) binned with 15
` bins per redshift, the κ peak counts (top right) binned in 45 κ height bins per redshift,
and the 9 moments (bottom) defined in (4.5.4), (4.5.5) and (4.5.6). We consider the single
redshift case (thin lines) and the tomographic case (thick line). The constraints are plotted
in units of the non–projected constraint, obtained from the full feature space. The feature
covariance matrix has been measured from an ensemble made of Nr = 16, 000 realizations
in order to ignore constraint degradation effects. We use NM = 100 different choices of
(Ωm, w0, σ8) to perform the PCA [47], and we choose the whitening parameters as µd =
σd =

∑
pDpd/NM .
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define R(Nc) as the matrix made by the first Nc rows of R. We project the image feature

d from the high dimensional space to the lower dimensional space using PCA via a matrix

multiplication:

dPCA(Nc) = R(Nc)

(
d− µµµ
σσσ

)
(5.4.3)

Because the PCA projection changes with different specifications of the external parame-

ters µd, σd, this type of technique is not scale invariant. Nevertheless, we will see it will

prove useful in parameter inferences from WL. Modern surveys, such as LSST [3], are

planning to use redshift tomography of image features in order to get tight constraints on

cosmology. Tomography greatly increases the dimensionality of the feature space. If tracer

galaxies are divided in Nz redshift bins, the feature dimensionality Nd increases at least

by a factor of Nz, which can become N2
z if the case we consider cross power spectra of

κ across different z bins. Figure 5.6 shows an application of PCA to forecasts of ΛCDM

parameter error bars obtained from redshift tomography of an LSST–like survey [47]. The

Figure shows that using the projection of single redshift features, even if the dimensionality

is halved, we still get a constraint on w0 which is within ∼ 15 − 20% of the value we get

in the non–projected case. We achieve even better performance in the tomography case. A

wide variety of dimensionality reduction techniques have been proposed in the literature

(see [46] for a non–comprehensive list), and their application to WL cosmology will be

investigated in future work.
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Figure 5.7: 1σ (68% confidence level) constraints on (Ωm, σ8) (left) and (Ωm, w0) (right)
from a single (3.5 deg)2 WL field of view. The elliptical contours are based on the pa-
rameter covariance matrix (5.1.8). The feature covariance matrix Ĉ has been estimated
from 1000 realizations of the fiducial cosmology and has been corrected for the bias in
(5.2.14). In the top panels we show the constraints obtained using the following features:
Pκκ (` ∈ [102, 105], Nd = 100), the 9 κ moments described in § 4.5, Minkowski functionals
(κ0 ∈ [−2σ, 2σ], Nd = 100) and peak counts (κ0 ∈ [−2σ, 5σ], Nd = 100). In the bottom
panels we show constraints obtained by combining Pκκ with each of the other three fea-
tures. Shape noise for a constant source redshift zs = 2 with ng = 15 galaxies/arcmin2

has been included.
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5.5 Constraints from Weak Lensing

In this section we want to give the reader an idea of the constraining power of WL on

ΛCDM. Moreover, we want to show higher order image features (described in Chapter

4) complement the κ power spectrum adding new information about cosmology. Error

bar forecasts on (Ωm, σ8) and (Ωm, w0) are shown in Figure 5.7. The Figure displays

constraints from both individual and combined features where the combinations include

higher order statistics and the power spectrum. The bias on the Σ estimate that arises

from high Nd (see equation (5.2.14)) has been corrected for. We can see that, for source

galaxies place at constant redshift with an angular density of ng = 15 galaxies/arcmin2, κ

peak counts and moments have a constraining power which is comparable with Pκκ. We

also observe that Minkowski functionals deliver constraints which are about a factor of 2

better than the ones provided by the moments alone (a hint about the fact that these two

descriptors are not equivalent can be found in Chapter 4).

Regarding the moments of κ, we can see that most of the cosmological information

is contained in moments with κ gradients (i.e. µ(n)
m with m > 0) which probe small scale

spatial correlations in addition to the PDF of κ.

From the bottom panel of Figure 5.7, we observe that higher order features comple-

ment Pκκ in giving better constraints on cosmology. The error bar improvement can be as

big as a factor of 2 for the Minkowski functionals combined with the power spectrum. In

the next Chapter we study a real WL dataset and its cosmological information.
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Chapter 6

An application to data: the CFHTLenS

galaxy survey

In this Chapter we discuss the application of WL analysis to the data contained in the

Canada France Hawaii Telescope LenS survey catalogs [48, 49, 50] (CFHTLenS in the

remainder of this work). The catalogs are publicly available. We start by reviewing the

reduction procedure we used to convert row–ordered data to κ maps. As a next step, we

present a set of cosmological simulations tailored to the CFHTLenS catalogs, which are

then used to build a feature emulator. We use this emulator as a forward model to produce

ΛCDM parameter inferences.

6.1 CFHTLenS catalogs

The CFHTLenS galaxy survey covers an area of 154 deg2, which divided in four patches

of size 64,23,44 and 23 deg2 respectively. The publicly released catalogs, created with the

SExtractor software [51], contain information on galaxy photometric redshifts (see [52] for
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a detail on the estimation procedure) and shapes extracted with lensfit [48, 49]. After

applying a redshift cut 0.2 < z < 1.3 to the source galaxies, and after considering only the

ones with positive weight w (larger w indicates smaller shape measurement uncertainty),

we are left with roughly Ng = 4.2 million objects, which are distributed over an area of

124.7 deg2. This corresponds to an average galaxy density of ng ≈ 9.3 galaxies/arcmin2.

The catalog size is further reduced by 25% if sub–patches with non negligible star–galaxy

correlations are rejected [53]. These correlations are introduced by imperfect Point Spread

Function (PSF) removal procedures. Using the information contained in the publicly avail-

able catalogs, we can estimate the corresponding κ profile making use of the KS procedure

(2.2.28) applied to the cosmic shear estimated from ellipticity measurements. We create

smooth ellipticity maps using an histogram approach (see [54, 55])

ē(θθθ) =

∑Ng
i=1 W (|θθθ − θθθi|)wi(ei − ci)∑Ng
i=1W (|θθθ − θθθi|)wi(1 +mi)

(6.1.1)

In equation (6.1.1), θθθi,wi, ei, ci,mi refer to the sky position, weight, observed ellipticity,

additive and multiplicative ellipticity correction of the i–th galaxy. The reconstructed im-

ages have been convolved with a Gaussian window

W (θθθ) =
1

2πθ2
G

exp

(
− θ2

2θ2
G

)
(6.1.2)

with size θG = 1′. We vary the size of the smoothing window to 1.8′ and 3.5′ for testing

purposes. We use the estimate γγγ(θθθ) = ē(θθθ) apply equation (2.2.28) to construct the κ

images which will be used in the inference of parameters. We divide the survey area in

13 square sub–fields of 12 deg2 angular size. We sample each subfield with 5122 evenly

spaced square pixels. The reduced data undergoes further compression: image features

110



6.2. EMULATOR

(see Chapter 4) are measured from each sub–field and then averaged over the 13 sub–fields.

Masked pixels in the maps are not an issue when measuring κ moments and Minkowski

functionals, as both statistics can be evaluated with local estimators in real space (see § 4.2,

§ 4.5). Masking is an issue for the power spectrum, which requires non–local operations

such as FFTs. We deal with this by filling the masked pixels with κ = 0 and restricting

the ` range in the analysis to exclude multipoles which correspond to the typical size of

the masks. In any case, when analyzing observations, masking effects are included in the

forward model in order to minimize bias in the parameter constraint. The extracted features

are then compared to the simulated ones in a Bayesian fashion (see Chapter 5) to obtain

posterior distributions for the ΛCDM parameter triplet (Ωm, w0, σ8). In the next section we

describe the simulations used for constructing of the CFHTLenS feature emulator.

6.2 Emulator

Emulators encode the relation between image features and cosmological parameters. We

sampled the ΛCDM parameter space using NM points and we ran the simulation pipeline

described in § 3.4 on each combination of parameters. We then measure the mean feature

in each cosmology and we infer the mean feature for an arbitrary set of parameters (not

included in the NM samples) using interpolation.

6.2.1 Cosmological parameter sampling

We consider a subset of Nπ = 3 parameters p = (Ωm, w0, σ8), seeking a way to uniformly

sample it with the constraint that no parameter is repeated twice. This scheme takes the

name of latin hypercube [56]. One way to implement the latin hypercube scheme is to
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build a Nπ–dimensional rectangular box that contains the sampled points and normalize it

to [0, 1]Nπ for simplicity. We set the number NM of cosmological models in the box to 91.

Following [56, 54], we define a cost function

C(P) =
2Nπ

1/2

NM(NM − 1)

∑
i<j

1

|Pi −Pj|
(6.2.1)

where P is a NM × Nπ matrix that contains information on the sample points in [0, 1]Nπ .

The sum runs over all NM(NM − 1)/2 sample pairs. In order to sample the hypercube

uniformly, we seek a configuration P that minimizes the cost function (6.2.1) with the latin

hypercube constraint. Because C is proportional the Coulomb potential energy of NM unit

point charges confined in a box, its minimum leads to a statistically isotropic configuration.

The simplest latin hypercube arrangement is the design P0, in which the points are arranged

on the diagonal of the hypercube

P0
i =

i

NM

(1, 1, ..., 1)︸ ︷︷ ︸
Nπ

(6.2.2)

This trivial arrangement is far from optimal. A possible heuristic method to find out the

optimal configuration P which minimizes (6.2.1) is simulated annealing [57]. Since this

algorithm is too computationally expensive for our purposes, we resort on a less accurate

but faster heuristic scheme, consisting in the following steps:

1. Start from the diagonal design P0

2. Pick a random pair of points (i, j) among the NM(NM − 1)/2 available, pick a

random parameter p among the Nπ available

3. Swap Pip with Pjp (the swap preserves the latin hypercube property), recompute the
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Figure 6.1: Distribution of the (Ωm, w0, σ8) sample triplets. We show both the (Ωm, w0)
(left) and the (Ωm, σ8) (right) projections. The black points correspond to the NM = 91
latin hypercube models (CFHTEmu1 simulations), and the red cross correspond to the fidu-
cial ΛCDM parameters read from Table 1.1 (CFHTcov simulations). The design results
from 105 iterations of the heuristic procedure described in § 6.2.1.

cost function C (this is done in O(1) time taking advantage of the separability of

(6.2.1))

4. If the cost is lower, keep the swap, otherwise undo it, reverting to the previous con-

figuration

5. Re–iterate the procedure starting from point 2.

After several iterations, we are left with a latin hypercube design which samples the param-

eter space approximately uniformly. The last step is to rescale the parameter coordinates

from the [0, 1]Nπ bounds to their originally intended values. The design we used in the

present analysis is shown in Figure 6.1.
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6.2.2 Simulations

We run one N–body simulation with Np = 5123, Lb = 240 Mpc/h for each of the cos-

mologies shown in Figure 6.1. These simulations (referred to as CFHTemu1) share the

random seed used to generate the initial conditions. We also run 50 independent N–body

simulations (referred to as CFHTcov) for the fiducial cosmology indicated as a red cross in

Figure 6.1. We used the fiducial dataset to estimate feature covariance matrices. We gen-

erate WL shear catalogs by ray–tracing from the observed galaxy sky positions and to the

real ones at the redshifts read from in the CFHTLenS catalog. In order to correctly forward

model observations, we add the intrinsic galaxy ellipticity to the WL signal obtained from

ray–tracing. This is done by looking at the CFHTLenS catalog itself, assuming that the

WL signal contained in the observations is much smaller than the intrinsic ellipticity noise.

We take the catalog complex ellipticity e of each galaxy and we rotate it by a random angle

φ by performing the substitution

e→ e exp(2iφ) (6.2.3)

We then add this intrinsic ellipticity to the simulated WL shear. The random rotation pre-

vents a double counting of the WL signal, whose spatial coherence is destroyed by the

rotation. The forward modeled catalogs are defined by

e(p) = γ(p) + e exp(2iφ) (6.2.4)

We then performed the KS inversion and consequent feature extraction steps.
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Figure 6.2: Test of the emulator accuracy for the CFHTLenS κ power spectrum Pκκ (red)
and Minkowski functionals Vk (green, blue, black). We use the CFHTemu1 simulations to
produce a feature emulator which is then tested against the mean feature measured in the
CFHTcov simulations (solid lines). We also compare the mean CFHTcov feature to an
emulated feature with (Ωm, w0, σ8) = (0.8,−1.0, 0.5) (dashed lines). The differences are
plotted in units of the statistical error in each of the Nd feature dimensions.

6.2.3 Interpolation

Using the LensTools feature extraction routines, we construct the NM ×Nd feature ma-

trix D (defined in § 5.4), which contains information on the mean feature in each of theNM

cosmologies. We used D to infer the mean feature in arbitrary cosmologies not necessar-

ily included in the NM samples. Although we could adopt sophisticated approaches based

on Gaussian Processes (see [56]), for the purpose of this analysis we found it convenient

to use a Radial Basis Functions (RBF) interpolation scheme. We model the cosmology

dependence of feature d as
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di(p) =

NM∑
j=1

λijf(|p− pj|;R) (6.2.5)

where pi is the i–th sampled ΛCDM parameter triplet and f is the multiquadric function

f(x;R) =

√
1 +

( x
R

)2

(6.2.6)

We chose the smoothing parameter R as the average distance between the CFHTemu1

points

R =
2

NM(NM − 1)

∑
i<j

|pi − pj| (6.2.7)

The interpolation to an arbitrary cosmology p can be performed once the weights λij are

known. The weights must obey the constraint di(pj) = Dji for each index pair (i, j). This

leads to the expression

λλλ = [f(R)−1D]T (6.2.8)

where we defined the NM ×NM matrix fij(R) ≡ f(|pi − pj|;R). A test on the accuracy

of the feature emulator d(p) is displayed in Figure 6.2: the plot shows that features in the

fiducial cosmology can be emulated with an accuracy that is within 10% of the correspond-

ing statistical error. We used the emulated feature d(p) as the forward model in Bayesian

parameter inference defined by equation (5.1.1).
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6.3 Parameter inference

In this section we present the main results of this investigation, which consist in the con-

straints on the (Ωm, w0, σ8) parameter triplet from CFHTLenS data using higher order

statistics. The features used include the κ power spectrum Pκκ, the Minkowski functionals

Vk of the excursion sets and the κ moments defined in (4.5.4), (4.5.5) and (4.5.6). [55], on

the other hand, focused on the κ peak counts. We built the feature space with Nd = 50

linearly spaced multipoles ` ∈ [300, 5000] for the power spectrum and Nd = 50 linearly

spaced thresholds κ0 ∈ [−0.04, 0.12] for the excursion sets. Taking advantage of the low

dimensionality of the parameter space (Nπ = 3), we were able to compute the parameter

likelihood L(p|d) explicitly, using equation (5.1.1), on a regularly spaced three dimen-

sional grid of parameters. Using the grid values of L, we found the parameter confidence

levels LN using equation (5.1.3) in a binary search algorithm. We were mostly interested

in the 1σ level L1.

6.3.1 PCA projection

In order to avoid constraint degradation issues, as discussed in § 5.2, we performed a PCA

projection on the feature space following the guidelines of § 5.4. We used the information

contained in the NM = 91 cosmologies that make up the CFHTemu1 simulation suite.

Figure 6.3 shows the singular values Λi obtained from the SVD procedure (5.4.1) applied

to the κ power spectrum, Minkowski functionals and moments. In the right panel we can

clearly see that the first few components (Nc ∼ 3) are already able to capture more than

99.5% of the feature variance across the NM cosmologies, hence suggesting the possibility

of an efficient compression of the feature space. Because the optimal number of compo-
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Figure 6.3: Singular values Λi from the SVD of D (left panel) and their cumulative sums in
units of the total variance (right panel), as a function of the component number. We show
the cases for the κ power spectrum (red), Minkowski functionals Vk (green, blue, black)
and κ moments (orange). A vertical black dashed line in correspondence of Nc = 3 has
been drawn for reference. The whitening factors µd, σd have been chosen as the mean and
standard deviation of the feature matrix D across the NM models.
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functionals and moments (left to right, top to bottom) and denote different values of Nc

with different colors. Confidence contours are calculated from the parameter likelihood
L(Ωm, w0, σ8) marginalized over w0. 119
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Figure 6.5: 1σ (68% confidence level) constraints on (Ωm, σ8) from CFHTLenS using the κ
power spectrum (red), Minkowski functionals (green, blue, black) and κmoments (orange).
The number Nc of principal components is indicated in parentheses. Confidence contours
are calculated from the parameter likelihood L(Ωm, w0, σ8) marginalized over w0.

nentsNc is not known a priori, we performed a robustness test on the (Ωm, σ8) constraint by

varying Nc and observing how the 1σ confidence contour varies in response. We used this

test (which is confined to the simulations and does not include CFHTLenS observations) as

a way to select the smallest Nc for which the contour size stabilizes. The results of this test

can be seen in Figure 6.4, which shows the optimal number of principal components for

different features. Nc ranges from 3 for Pκκ to 5 for V0 and 20 for V1,2. For the moments

of κ, we keep the full feature space with Nc = 9.
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Figure 6.6: Breakdown of the 1σ constraint on (Ωm, σ8) using the CFHTLenS κ mo-
ments. We show different combinations of moments measured from κ maps smoothed
with θG = 1′ (left panel) and combination of single point moments µ(n)

0 measured from
κ maps smoothed with different smoothing scales θG = 1′, 1.8′, 3.5′ (right panel). The
definitions of the moments µ(n)

m are contained in § 4.5.
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Figure 6.7: Σ8 likelihood (marginalized over (Ωm, w0)) obtained from CFHTLenS obser-
vations using the κ power spectrum (red), Minkowski functionals Vk (green, blue, black)
and κ moments (orange). The number Nc of principal components is indicated in paren-
theses in the legend. We also denote, with a gray band, the 1σ constraint on Σ8 found by
Planck [14] as a consistency check.
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6.3.2 Density fluctuations

In this section we discuss how CFHTLenS constrains the Dark Matter density parameter

Ωm and the amplitude of the initial density fluctuations σ8. It is evident from Figure 6.5 that

the κmoments are the most efficient in constraining (Ωm, σ8) because of both precision and

absence of bias. The power spectrum constraint is degraded by a well known degeneracy

between Ωm and σ8, evident in the definition of the lensing density (3.2.23). We can also

say that the constraint from Minkowski functionals is affected from uncorrected residual

systematics in the CFHTLenS catalogs. These residuals, combined with the degeneracy,

shift the peak of the parameter likelihood towards the unphysical large Ωm, low σ8 region.

Figure 6.6 shows the breakdown of the (Ωm, σ8) constraint obtained from different

sets of κ moments. In agreement with what stated in § 5.5, we find that most of the con-

straining power comes from moments which include gradients of κ (µ(n)
m with m > 0).

We also observe that a significant amount of cosmological information is carried by mo-

ments which are quartic in κ, as [58] also conclude. The right panel of Figure 6.6 shows

that, for the sake of constraining Ωm, σ8, combining one point moments µ(n)
0 with different

smoothing scales is not as effective as using gradient moments.

Although there is a degeneracy between Ωm and σ8, the combination of parameters

Σ8 = σ8(Ωm/0.27)α can be tightly constrained upon a suitable choice for the exponent α,

as different values of α map to different directions in the (Ωm, σ8) plane. Using the param-

eter likelihood L(Ωm, w0, σ8), we can compute the expectation value E and variance V of

Σ8. The optimal α is computed by minimizing V/
√
E. The optimization procedure yields

an approximate value of α = 0.55, with slight variations across features. The marginal-

ized constraint on Σ8 is shown in Figure 6.7 and Table 6.1 We clearly see that the κ power

spectrum and the moments deliver a Σ8 constraint consistent with the one from Planck [14]
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Feature Σ8 = σ8Ω0.55
m

Pκκ(3) 0.84+0.06
−0.09

Pκκ(3) + Moments(9) 0.86+0.02
−0.09

V0(10) + V1(10) + V2(10) 0.75+0.07
−0.04

Pκκ(3) +V0(10) + V1(10) + V2(10) 0.76+0.04
−0.05

Pκκ(3) +V0(10) + V1(10) + V2(10)+ Moments(9) 0.76+0.06
−0.04

Table 6.1: Tabulated values of 1σ constraints on Σ8 from CFHTLenS using different fea-
tures

(although with a larger error bar). The same conclusion does not hold for the Minkowski

functionals, which seem to be affected by uncorrected systematics in the CFHTLenS cata-

logs to a greater extent than the power spectrum and the moments.

6.3.3 Dark Energy

Constraining on the physical nature of Dark Energy, unfortunately, is not possible using

CFHTLenS data alone, mainly because of the small size of the survey. Looking at Figure

6.8, which shows constraints on Dark Energy equation of state w0, we can conclude that

the CFHT survey this parameter unconstrained. With bigger surveys coming up in the

future one can hope to reduce statistical errors on feature measurements and to obtain

smaller confidence contours as a consequence. Reduced statistical errors, on the other

hand, require throughout knowledge of systematic effects, which have to be included in

forward models in order to avoid bias in the parameters. The treatment of some of these

systematic challenges will be the object of the next Chapter.
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Figure 6.8: 1σ (68% confidence level) constraints on (w0,Σ8) from CFHTLenS using the
κ power spectrum (red), Minkowski functionals (green, blue, black) and κ moments (or-
ange). The numberNc of principal components is indicated in parentheses. The confidence
contours are referred to the parameter likelihood L(Ωm, w0,Σ8) marginalized over Ωm.
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Chapter 7

Applications to the LSST survey:

systematic challenges

In this Chapter we tackle some of the systematic issues that arise in a survey with large sky

coverage such as LSST [3]. In the previous Chapter we saw that a small WL survey, such as

CFHTLenS, leaves the Dark Energy equation of state w0 essentially unconstrained. LSST

covers an area of roughly 12, 000 deg2, which is 100 times bigger than CFHTLenS. This can

in principle lead to constraints on cosmology which are 10 times more precise. Increased

precision, however, comes at a cost, because systematic effects that were negligible for

CFHTLenS due to large statistical errors, may not be negligible anymore when compared

to smaller cosmic variance fluctuations. We discuss a variety of systematic effects that can

affect parameter estimates: we focus on atmospheric contaminations to the shear signal,

sensor effects, and inaccuracies in photometric redshift estimation. We also study potential

bias that can arise from approximate forward models based on the Born approximation. To

conclude, we mention additional systematic effects which we did not have the chance to
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investigate, and that we leave for future work.

7.1 Atmospheric/PSF spurious shear

The first systematic issue we investigate is the contamination of source galaxy shape mea-

surements [20] due to the presence of the atmosphere. Before hitting the sensors on the

telescope plate, photons travel through the Earth’s atmosphere, which dilutes the WL sig-

nal by convolving it with a characteristic Point Spread Function (PSF). This effect can be

better understood thinking about a point source, like a star: when observed on the telescope,

this point source looks like an extended object, which traces the angular profile of the PSF.

This contamination adds the instrumentation specific issues, such as the telescope’s own

PSF, tracking errors and photon shot noise. All these effects are modeled and simulated

using the phosim software package [59]. We were provided with 20 independent realiza-

tions of a phosim–generated spurious shear catalog (see [60]) that contains information

on 105 galaxies spread over a 4 deg2 field of view. The properties listed in the catalog in-

clude residual spurious shear measurements for each galaxy, after PSF corrections via a

polynomial model subtraction were attempted [60]. The stochastic component of the resid-

ual shear decreases approximately as the inverse of the number of exposures of the field

of view. The spatial patterns of the shear residuals in 4 of these realizations are shown

in Figure 7.1. Angular correlations in the patterns seen in Figure 7.1 can be quantified in

terms of the shear–shear two point correlation function

ξ+
γγ(α) =

〈
γ1(θθθ)γ1(θθθ +ααα) + γ2(θθθ)γ2(θθθ +ααα)

〉
, (7.1.1)
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Figure 7.1: 4 independent realizations of the residual spurious κ after subtractions per-
formed with polynomial fits to the PSF [60]. We show the reconstructed κ profiles ob-
tained via the KS inversion procedure in (2.2.28). A Gaussian smoothing window with
scale θG = 1′ has been convolved with the images.
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which is related to the spurious shear E and B mode power spectra as

ξ+
γγ(α) =

∫ ∞
0

d`

2π
`J0(`α)[SEE(`) + SBB(`)] (7.1.2)

In equation (7.1.2), SEE and SBB refer to the power spectra of the E and B modes of

the spurious shear, which defined in equation (2.2.29). J0 is the 0–th order Bessel func-

tion of the first kind. A useful number to quote is the real space amplitude σκ,sp of the κ

contamination induced by spurious shear, defined by

σ2
κ,sp =

∫ ∞
0

d`

2π
`SEE(`) (7.1.3)

As we can see from Figure 7.2, we are allowed assume statistical isotropy assumption for

this kind of contamination, as its power spectrum depends on ` = |̀`̀| only. We also observe

that, contrary to what happens for the WL signal, the magnitude of the spurious E and B

mode auto power spectra is comparable. This property can be used as a flag for other kind

of systematic effects that contribute to the observed shear with a large B mode. A popular

model for the scale dependence of the residual spurious shear is encoded by a log–linear

power spectrum [61]:

SEE(`) =
A

`(`+ 1)

∣∣∣∣1 + n log

(
`

`0

)∣∣∣∣ , (7.1.4)

where A, n, `0 refer to the spurious shear amplitude, spectral index and ` pivot point re-

spectively. [61] employ such a model in order to forecast parameter bias caused by un-

corrected spurious shear. Using the 20 spurious shear realizations we were provided with,

we found that the log–linear model (7.1.4) for the residual shear is only correct for small `
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Figure 7.2: Two dimensional profiles of the power spectra measured from the spurious
shear E (left panel) and B (middle panel) modes. We also measure the cross EB term
〈γ̃E γ̃B〉 (right panel). The quantities shown are the average of 20 independent residual
spurious shear realizations. The statistical isotropy of the patterns is evident, as well as the
fact that SEE and SBB, unlike the case for the WL signal, are comparable in magnitude.
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Figure 7.3: ` dependence of the residual spurious shear power spectra SEE (blue), SBB

(green) and SEB (red). The mid points and error bars refer respectively to the mean and
standard deviation of the power spectra measured from the 20 spurious shear realizations.
The dashed black line shows the best fit to the EE power spectrum performed with the
empirical model in equation (7.1.5).

and breaks down on smaller scales [20] (probably due in part to the effect of smoothing),

as can be seen in Figure 7.3. We propose the following alternative model for the spurious

shear power spectrum. The model is piecewise log–linear but has an exponential damping

at high `, and provides a better fit to the instrument simulation than (7.1.4). We used the

following empirical approximation

SEE(`) =



A0

`(`+1)

∣∣∣1 + n0 log
(
`
`0

)∣∣∣ if ` ≤ 700

A1

`(`+1)

∣∣∣1 + n1 log
(
`
`0

)∣∣∣ if 700 ≤ ` ≤ 3300

A2 log `
`(`+1)

exp [−b(log `− µ)2] if ` > 3300

(7.1.5)
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We fixed the pivot point to `0 = 700 and we found the best fit parameters to the pattern

seen in Figure 7.3 to be (A0, n0, A1, n1, A2, b, µ) = (3.17 · 10−5, 1.36, 1.6 · 10−4, 7.54, 4.4 ·

10−5, 15.37, 3.41). If we model the residual spurious shear as an additive contamination

to the WL signal, using equation (5.1.7) we can evaluate the ΛCDM parameter bias that

is induced by leaving this systematic effect uncorrected for. We generated Gaussian spu-

rious shear κ mock images using the empirical model (7.1.5). The Fourier coefficients for

the spurious κ maps were drawn from a normal distribution with zero mean and variance

SEE(`). We added these spurious shear mock realizations on top of the WL signal maps

(taken from the IGS1 simulations, see Appendix), extracted the image features accord-

ing to the procedures described in Chapter 4 and quantified parameter bias on the triplet

(Ωm, w0, σ8). The results are shown in Table 7.1. The calculations show that, under the

assumption that source galaxies are positioned at a constant redshift zs = 2, the effect of

the spurious shear on cosmological constraints depends on the feature used in the analy-

sis. Features that are polynomial in κ, such as the power spectrum and moments, deliver

constraints which are essentially unbiased (for the study cases described in Table 7.1). The

same conclusion is not true for features which probe the morphology of κ: constraints from

Minkowski functionals are biased with a several σ significance, when spurious shear is left

uncorrected for. The situation is not as dramatic for the peak counts constraint on σ8, as

the significance of the bias is below 1σ. When we look at the Ωm and w0 constraints, how-

ever, the bias can be as large as 2σ for the spurious shear modeled by the LSST instrument

simulation. Because the direction of the bias depends on the particular feature considered,

possibilities of self–calibration could be explored in the future.
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Survey Assumptions
zs = 2, ng = 15 galaxies/arcmin−2, ` ∈ [100, 2 · 104], κMF ∈ [−2σ, 2σ], κpk ∈ [−2σ, 5σ]

Model Ωm w0 σ8

κ power spectrum
Log–linear 4.0 · 10−6 −2.69 · 10−4 2.5 · 10−5

LSST simulation −6.22 · 10−5 2.94 · 10−4 1.32 · 10−4

LSST simulation ×10 −7.51 · 10−4 0.0025 0.0015
Error (1σ) 0.0015 0.01 0.0025

Minkowski functionals
Log–linear 0.0026 0.037 −0.0024

LSST simulation 0.0020 0.025 −0.0014
LSST simulation ×10 0.007 0.055 −0.0068

Error (1σ) 0.001 0.005 0.0014
κ Moments

Log–linear −2.8 · 10−5 −0.0011 4.7 · 10−5

LSST simulation 1.09 · 10−5 −3.96 · 10−4 −7.60 · 10−6

LSST simulation ×10 −2.84 · 10−5 −4.72 · 10−3 1.26 · 10−4

Error (1σ) 0.0016 0.008 0.002
Peak counts

Log–linear 0.009 0.026 3.2 · 10−4

LSST simulation 0.0011 0.018 2.9 · 10−4

LSST simulation ×10 0.0026 0.046 4.0 · 10−4

Error (1σ) 0.0011 0.0062 0.0015

Table 7.1: Bias on the parameter triplet (Ωm, w0, σ8) calculated using three different mod-
els for the LSST spurious shear: Log–linear (first rows) refers to the log–linear model
(7.1.4) with (A, n, l0) = (10−6.6, 0.7, 700), with the normalization σ2

κ,sp = 4× 10−7. LSST
simulation (second rows) refers to the spurious shear mocks generated with the empirical
model (7.1.5) (the amplitudes have been divided by a factor of Nexposures = 368 to account
for multiple field of view exposures), LSST simulation × 10 (third rows) refers to the same
model but with the amplitude σ2

κ,sp increased by a factor of 10. The 1σ error values (fourth
rows) refer to the forecasts for an LSST–like survey obtained with equation (5.1.8).
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7.2 CCD sensor effects

In this section we discuss issues that arise from imperfections in the sensors used to image

source galaxies. Modern telescopes, such as LSST, use Charge–Coupled Devices (CCD)

[62, 3, 59] as means to covert photon counts into voltage signals, which are then mapped

into digitized images. Impurity gradients in the silicon, of which CCDs are made, cause the

presence of spurious transverse electric fields, which displace the photons captured by the

CCD. Such displacements lead to distortions in shape measurements, which in principle

affect reconstructed WL fields. The astrometric displacement dE due to the transverse

electric fields is usually modeled as radial field [63] on the surface of the CCD according

to

dE = d(r)r̂ (7.2.1)

At first order, this generates an additive contribution to the reconstructed κ field, which

takes the name of tree ring effect. The induced contamination to the convergence, κtree,

can be calculated as (see [63])

κtree = −1

2
∇ · dE = −1

2

(
d(r)

r
+

d

dr
d(r)

)
. (7.2.2)

A visualization of the tree ring effect is shown in the left panel of Figure 7.4. An additional

source of contamination that derives from CCD manufacture imperfections has to do with

the variable size of the CCD pixels. If the pixel area is not uniform across the CCD surface,

variations in photon counts are erroneously interpreted as variations in the intensity pro-

file of the source. This creates an additional source of error in the measurement of galaxy

shapes. The typical spatial profile of the convergence contamination due pixel size varia-
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Figure 7.4: Spatial profiles of the additive contaminations to κ due to the tree ring (left) and
pixel size variations (right) effects. The images cover a field of view of (0.2 deg)2. In order
to extend the mapping of the systematics to the entire LSST field of view of (3.5 deg)2, we
repeated the patterns seen in this Figure across the whole field of view, applying random
90◦ rotations at each replication.

tions, κpixel, is shown in the right panel of Figure 7.4. We remand the reader to [63] for a

throughout discussion and modeling of the tree ring and pixel size variation effects. In or-

der to evaluate the systematic effects on cosmological constraints, we make use of equation

(5.1.7) and we use the κ power spectrum Pκκ as an image feature. The bias estimate b̂ in

the parameters is calculated as

b̂ = p̂sp − p̂0 = Z(d̂sp − d̂0), (7.2.3)

where we indicated the measured κ power spectra with and without CCD systematics

present as d̂sp and d̂0 respectively. The Nπ ×Nd projection matrix Z is defined as

Z = (MTΨM)−1MTΨ, (7.2.4)
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Figure 7.5: Power spectral density of the additive κ contamination due to the tree ring
(blue) and pixel size variation (green) effects. The power spectra were measured from one
realization of a (3.5 deg)2 field of view obtained repeating the patterns in Figure 7.4 with
random 90◦ rotations.

following the notation of § 5.1.1, in which M,Ψ are feature derivative with respect to

cosmology and the inverse covariance matrix respectively. More explicitly, we write the

power spectrum residuals as

P̂κκ+sp(`b)− P̂κκ(`b) =

∣∣∣∣∣ ˆ̃κ(`b) + κ̃sp(`b)

2π

∣∣∣∣∣
2

− P̂κκ(`b) (7.2.5)

In equation (7.2.5), the subscript i can either refer to the tree ring or pixel variation effect.

Note that, contrary to ˆ̃κ, the systematic contribution κ̃sp is not a stochastic quantity, since it

is tied to the field of view. The same is true for its angular power spectrum Pκκ,sp (shown
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in Figure 7.5). We express the estimator for the bias in the α–th cosmological parameter as

b̂α =
`max∑

`b=`min

Zα`b

(
Pκκ,sp(`b) +

ˆ̃κ(`b)κ̃
∗
sp(`b) + ˆ̃κ∗(`b)κ̃sp(`b)

(2π)2

)
(7.2.6)

We assume a diagonal covariance matrix for the κ power spectrum, which is calculated

according to (4.4.7):

C`b`b′ =
P 2
κκ(`b)

Nmodes(`b)
δ`b`b′ , (7.2.7)

where Nmodes(`b) is the number of `̀̀ modes that fall inside the Fourier annulus of radius `b.

The value of Nmodes(`b) can be read off equation (4.4.7). Using the diagonal assumption,

we can write down the expectation value b and scatter σb of the bias estimator (7.2.6) as

bα =
〈
b̂α

〉
=

`max∑
`b=`min

Zα`bPsp(`b) (7.2.8)

σbα =

√〈(
b̂α − bα

)2
〉

= 2
`max∑

`b=`min

Zα`b

√
Psp(`b)Pκκ(`b)

Nmodes(`b)
(7.2.9)

Note that, because of the nature of the bias estimator (7.2.6), the parameter bias induced by

CCD effects has both a fixed component (7.2.8) proportional to Psp and a stochastic com-

ponent with a root mean square error (7.2.9), which scales as
√
Psp/Nmodes. Depending on

the size of the survey, which sets the magnitude ofNmodes(`b), the fixed and stochastic com-

ponents of the bias have different relative amplitudes because, while (7.2.9) decreases with

the survey area, (7.2.8) does not. Table 7.2 shows the values of the bias components b, σb

for an LSST–like galaxy survey. Compared with the 1σ ΛCDM parameter errors shown in

Table 7.1, we can safely conclude that the bias induced by this kind of CCD imperfections
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Bias component Ωm w0 σ8

Tree rings
b 5.05 · 10−10 2.79 · 10−9 −3.52 · 10−10

σb 6.92 · 10−8 1.34 · 10−7 1.29 · 10−7

Pixel size variations
b 1.21 · 10−5 −2.18 · 10−5 −1.79 · 10−5

σb 1.21 · 10−5 3.37 · 10−5 1.82 · 10−5

Table 7.2: Amplitudes for the fixed (7.2.8) and stochastic (7.2.9) components of the
(Ωm, w0, σ8) bias induced by the tree ring and pixel size variations effects resulting from
CCD fabrication imperfections. The spurious contributions to κ were measured from a
LSST instrument simulation [63], and the forward models necessary to obtain the WL Pκκ
derivatives M and covariance matrix C were calculated with the analytical code NICAEA
[38, 39]. The number Nmodes of `̀̀ modes which appears in equation (7.2.9) is referred to an
LSST–like survey. Shape noise contributions for source galaxies placed at zs = 2, with a
galaxy density of ng = 15 galaxies/arcmin2, are included.

is negligible even for a survey with an area as wide as LSST. The bias is several order of

magnitude smaller than the parameter uncertainty caused by cosmic variance.

7.3 Photometric redshift errors

In this section we study the effect of uncorrected redshift measurement errors on ΛCDM

inferences. Photometric surveys, such as LSST, do not use full spectroscopic information in

order to determine the redshift zs of a source, but use a limited number of frequency bands

(LSST uses 5 of them for example) to provide an estimate of zs instead. This estimate is

usually inaccurate [64]. We model the relation between the photometric and real redshift

of a source galaxy as the sum of a fixed bias bph and a stochastic component of root mean

square σph [47, 64], according to

138



7.3. PHOTOMETRIC REDSHIFT ERRORS

Figure 7.6: Redshift distribution of 106 source galaxies arranged uniformly in a (3.5 deg)2

field of view (which corresponds to a density of ng = 22 galaxies/arcmin2). The distribu-
tion follows the law n(zs) ∝ (zs/z0)2 exp(−zs/z0) with z0 = 0.3. For the purpose of this
study (which makes use of the LSST100Parameters simulation suite, see Appendix)
the galaxies have been divided in 5 redshift bins, chosen such that each bin contains the
same number of galaxies.

zph(zs) = zs + bph(zs) + σph(zs)N (0, 1) (7.3.1)

We chose the functional forms of the fixed and stochastic components following the LSST

Science Book [64]:

bph(zs) = 0.003(1 + zs) (7.3.2)

σph(zs) = 0.02(1 + zs) (7.3.3)

We simulated an LSST–like galaxy survey by drawing the redshift zs of Ng = 106 source
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Figure 7.7: Left panel: bias on (Ωm, w0) induced by photometric redshift errors, obtained
using the κ tomographic power spectrum (red), peak counts (green) and moments (blue).
We show the bias values for 20 independent LSST–like survey realizations (crosses) and
indicate the mean of p̂ph − p̂ as a square. For reference, we draw the 1σ (68% confidence
level) ellipses on the bias p̂ph − p̂ assuming its distribution is Gaussian. Right panel: 1σ
confidence ellipses on (Ωm, w0) obtained from tomographic features (color coded in the
legend). We the constraints without (thin lines) and with (thick lines) Planck [14] priors
included via equation (5.1.11). Feature covariance matrices have been measured fromNr =
16, 000 realizations of the shear catalogs.

galaxies from the distribution in Figure 7.6. The galaxies are distributed uniformly in a

(3.5 deg)2 field of view. Uncorrected photometric redshift errors can bias the constraints

on cosmology when employing redshift tomography as a technique to map the WL feature

space [65, 47] more in depth. If we assign the redshift zph to a galaxy which has a real

redshift of zs during the feature forward modeling process, we must consider the possibil-

ity that this forward model is wrong. To study the importance of this effect, we divided

the source galaxies in Nz = 5 redshift bins and we used the LensTools functionality
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ray–trace γγγ to the real redshift zs of each galaxy. This operation produces multiple real-

izations (see § 3.2.3) for different ΛCDM cosmologies (we refer to this dataset as to the

LSST100Parameters simulations). The shear catalogs are then converted into tomo-

graphic images via a binning procedure defined by

γγγ(θθθp, z̄b) =

∑Ng
g=1 γγγ(θθθg, zg)W (θθθg, θθθp; zg, z̄b)∑Ng

g=1W (θθθg, θθθp; zg, z̄b)
. (7.3.4)

In equation (7.3.4), θθθg, zg denote the galaxy position and redshift respectively and θθθp, z̄b

indicate the pixel position on the image and the center of the redshift bin (see Figure 7.6).

We chose the window function W to be a top–hat:

W (θθθg, θθθp; zg, z̄b) =


1 if θθθg ∈ θθθp, zg ∈ z̄b

0 otherwise.

(7.3.5)

We then applied the KS inversion procedure (2.2.28) to each of the 5 γγγ(θθθp, z̄b) images to

obtain the convergence field κ(θθθp, z̄b) (a smoothing factor of e−`2θ2G/2 with θG = 0.5′ has

been applied during the KS inversion for convenience). We extracted image features with

the techniques described in Chapter 4, with the additional tomographic classification of

the source galaxies in different redshift bins {z̄b}. We define the cross–redshift κ power

spectrum Pκκ(`, z̄b, z̄b′) as

〈κ̃(`̀̀, z̄b)κ̃(`̀̀′, z̄b′)〉 = (2π)2δD(`̀̀ + `̀̀′)Pκκ(`, z̄b, z̄b′) (7.3.6)

Note that, when introducing tomography, the dimensionality of the feature space Nd de-

fined by Pκκ increases from Nd to NdNz(Nz − 1)/2. For higher order κ features, which

are not quadratic in κ, we join the vectors d measured in different bins z̄b, increasing the
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dimensionality of the feature space from Nd to NdNz. Dimensionality reduction tech-

niques become especially relevant when considering tomographic features because, given

the increased dimensionality, the constraint degradation pitfalls described in § 5.2 become

important.

In order to study the effects of photometric redshift errors, we took the simulated

shear catalogs in the fiducial cosmology and replaced each redshift zs with an estimate

zph based on photometry. The estimate was obtained using equation (7.3.1). We then

performed a κ reconstruction with equation (7.3.4), we measured the features from the

images and we inferred ΛCDM parameters using equations (5.1.7), (5.1.8). We quantified

the bias induced on the inference on a parameter p by uncorrected photometric redshift

errors as p̂ph−p̂, where p̂ph, p̂ denote parameter estimates from mock observations with and

without redshift errors. We show the results in Figure 7.7. The plot shows that photometric

redshift errors, if left uncorrected, cause significant bias in the parameters when using

polynomial features such as the power spectrum and the moments of κ. Peak counts, on

the other hand, are less affected by these systematics, likely because they probe correlations

between shapes galaxy that are very close to each other on the sky. These correlations are

affected to a lesser extent by photometric redshift errors, which are spatially uncorrelated.

Since the bias for different features appears to point in different feature space directions,

the possibility of self–calibration may be considered in the future.

The right panel of Figure 7.7 shows constraint forecasts on Ωm and w0 coming from

WL tomography. The Figure shows that the combination of κ power spectrum, moments

and peaks can in principle constrain w0 to a percent level.
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Solver Runtime (1 FOV) Memory usage CPU time (1000 FOV)
Born 36.0 s 0.86 GB 10 hours

Full ray–tracing 124.8 s 1.65 GB 35 hours
Born + O(Φ2) 156.7 s 1.52 GB 44 hours

Table 7.3: CPU time and memory usage benchmarks for κ reconstruction. The test case
we considered consists in a discretization with Nl = 42 uniformly spaced lenses between
the observer and the sources at zs = 2, each with a resolution of 40962 pixels. The κ field
is resolved with 20482 light rays. We show both the runtime for producing a single field
of view and the CPU hours needed to perform the reconstruction 1000 times, which is the
amount of time needed to mock an LSST–like galaxy survey. Run times do not include
the Poisson solution calculation, as this can be recycled to produce multiple field of view
realizations (see § 3.2.3). The Poisson solution run time is negligible in the account of the
total CPU time needed for the production of Nr � Nl WL realizations.

7.4 Born approximation

In the previous sections we focused on the bias arising from observational systematics. In

this section, on the other hand, we study a potential source of error due to the approximate

theoretical modeling of WL features, namely the Born approximation. If one truncates the

forward model for κ to first order in the gravitational potential Φ, equation (3.3.2) is suffi-

cient for the calculation. The Born approximation is faster than exact ray–tracing (based on

(3.2.17)) because the knowledge of the density contrast δ is sufficient for the computation.

For full ray–tracing, on the other hand, Φ is necessary to compute the ray deflection angles

and hence the solution to the Poisson equation (3.2.22) is needed. Table 7.3 (taken from

[66]) shows that, using the LensTools implementation, one can save as much as a factor

of 4 in CPU time when computing κ using the Born approximation. These time savings,

however, come at a price since the forward model (5.1.5) and the matrix M are accurate

only at O(Φ). When using approximate forward models to fit observations via (5.1.7),

depending on the particular image feature used, one may induce bias in the inference of
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Figure 7.8: Distribution of parameter estimates for the triplet (Ωm, w0, σ8), obtained with
(5.1.7) using a variety of κ features which include the power spectrum and higher mo-
ments in real space. The observation to fit has been generated with full ray–tracing and
the forward model, based on the feature derivatives M, has been obtained with both the
Born approximation (green bars), and exact ray–tracing (for the sake of null testing, blue
bars). Forward models and covariance matrices have been estimated from ensembles of
8192 κ realizations, and mock measured features have been generated averaging over 1000
realizations, to mimic the area of an LSST–like survey. The p̂0 samples were drawn with a
bootstrapping procedure. The WL ensembles on which this study is based are taken from
the DEBatch simulation suite (see Appendix).
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Figure 7.9: Statistical significance of the bias induced by the Born approximation on the
Ωm(blue), w0(red) and σ8 (green) inferences obtained from the κ power spectrum, as a
function of the survey galaxy angular density ng. The averaged results refer to an ensemble
of 1000 bootstrapped realizations of an LSST–like galaxy survey.

145



CHAPTER 7. APPLICATIONS TO THE LSST SURVEY: SYSTEMATIC
CHALLENGES

parameters. This possibility was studied in [66], from which we take Figure 7.8. The plot

shows the distribution of parameter estimates p̂0 obtained with exact and Born approxi-

mated forward models. We can clearly see that inaccuracies due to the Born approximation

do not lead to significant bias in the constraints obtained from the κ power spectrum. This

conclusion is valid for an LSST like survey with a galaxy density of 30 galaxies/arcmin2

and holds for densities as high as 60 galaxies/arcmin2, as suggested by Figure 7.9. Figure

7.8 also shows that the Born approximation does not predict κ moments with sufficient

accuracy, because the induced bias in w0 and σ8 is significant. The bias persists even when

Gaussian shape noise is added to the images: higher κ moments are sensitive to non–

Gaussian statistical information in the κ field, which has a distinct signature even when

Gaussian shape noise is introduced. As we conclude in § 6.3.2, κ moments contain signif-

icant cosmological information. Because of this, in the analysis of a WL survey with the

statistical power of LSST, the Born approximation does not predict κ higher moments to

sufficient accuracy, and an exact approach based on ray–tracing is needed.

7.5 Other systematic effects

In this section we briefly overview some of the systematic effects that we did have the

chance to investigate in this work, but that might be important for future analysis of WL

observations. In § 7.2 we discussed how CCD imperfections generate spurious contribu-

tions to the convergence and we isolated two effects, the tree rings and the variations of

pixel sizes, which have negligible impact on parameter inference. There is another effect

which influences CCD operations and is worth mentioning: the so called brighter–fatter ef-

fect [67]. The response of CCD sensors to the flux of source galaxies is not linear: charge
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accumulation on the surface of the CCD induces artificial distortions in the images, which

have a net effect on the κ reconstruction procedure. These artificial deformations are more

severe when observing brighter sources.

Another systematic effect worth mentioning has to do with the way one interprets the

correlations between the shapes of nearby galaxies: κ is inferred with the KS inversion pro-

cedure (2.2.28) under the assumption that the ellipticity of the image is caused by cosmic

shear. Intrinsic galaxy ellipticity is taken into account adding a white noise component to κ

using equation (2.2.31). This treatment, however, completely ignores the fact that galaxies

are partially aligned by the Large Scale Structure of the universe, and hence their shapes

present intrinsic alignments (see [68] for a review on the effect). This alignment is usually

modeled as an additive contribution γγγI to the WL shear but, contrary to shape noise, γγγI

is spatially correlated. Analytical models for γγγI based on the tidal gravitational field have

been explored in the literature [69]. The effect of ignoring intrinsic alignment on ΛCDM

inferences using power spectra has also been explored by [70] and has been proven to be

non negligible for large surveys such as LSST. The effects of intrinsic alignments hence

need to be mitigated in order to avoid bias.

The last effect we mention in this section has to do with baryon effects. The κ forward

modeling pipeline we made use of relies on Dark Matter only N–body simulations, which

are relatively straightforward to run thanks to the collision–free nature of Dark Matter

particles. In the real Universe, however, baryons with non zero pressure have non negligible

effects on small scales. A variety of studies on the effects of baryon physics can be found

in the literature. These include investigations of baryon physics on matter power spectra

[71, 72], WL power spectra [73, 74], two and three–point shear statistics [75] and WL peak

counts [76]. Forward modeling pipelines that include baryons add additional computational
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complexity to the N–body simulations, as hydrodynamic approaches need do be adopted

in order to model pressure effects correctly. Effects due to AGN and Supernovae feedback

are currently under theoretical investigation and pose additional challenges.
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Chapter 8

Conclusions

As a conclusion of this thesis, we give a summary the results we obtained and discuss

possible future developments of cosmology with WL.

8.1 Overview of the results

8.1.1 Forward modeling

Inference of cosmological parameters from WL observations require a forward model that

maps the ΛCDM parameter space onto the space of observations (or features). Although

analytical forward models exist for the κ power spectrum [38, 39, 56], when considering

higher order κ features one must rely on numerical simulations. In this work we presented

a WL simulation pipeline which is capable of producing multiple realizations of κ images

in a given cosmology. This pipeline (published in [24]), combined with image feature

extraction techniques, provides the forward model capabilities needed in the analysis of

WL observations.
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8.1.2 Parameter constraints

The main goal of this thesis was to study the cosmological information carried by higher or-

der κ features. We also wanted to see if this new information complements the one already

supplied by the angular power spectrum. Although a precise quantification of the additional

information depends on the details of the analysis such as the survey area, galaxy distribu-

tion in redshift and feature binning choices, we can safely conclude that the higher order

statistics considered in this work contain a significant amount of information that quadratic

κ descriptors ignore. We can see this in § 5.5 where we examine constraint forecasts on

the (Ωm, w0, σ8) parameter triplet: under the assumption that all source galaxies lie at a

single redshift, higher κ moments, morphological descriptors and peak counts can deliver

constraints which are 1.5 to 2 times tighter than the ones delivered by the power spectrum

alone. When we use higher order features to constrain cosmology from CFHTLenS data

in Chapter 6, we conclude that, although w0 remains essentially unconstrained, κ moments

deliver a constraint on (Ωm, σ8) which is much tighter than the one provided by the power

spectrum alone. Although the CFHTLenS constraints obtained with the κ power spectrum

and moments are compatible with the ones obtained with Planck, the same is not true for

confidence intervals inferred with Minkowski functionals, which are affected by residual

uncorrected systematics in the CFHTLenS data.

8.1.3 Noise in simulations

In this work we observed how higher order statistics tighten the constraints on ΛCDM

parameters. Because forward modeling these statistics is done with the use of numerical

simulations, sample variance is introduced in the models which are then used to fit the data.
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We investigated this issue in Chapter 5, where we studied parameter error bar degradations

due to noise in the covariance matrix. We verified that, when Nr realizations are used to

estimate a Nd × Nd feature covariance matrix, error bars are enlarged by a factor which

scales roughly as 1 + O(Nd/Nr), with O((Nd/Nr)
2) terms becoming non–negligible for

high Nd. We indicated dimensionality reduction techniques such as PCA as possible meth-

ods to make this issue less severe. We also found that only few N–body simulations with

boxes of size Lb = 240 Mpc/h (which is big enough to cover a (3.5 deg)2 field of view at

zs = 2) are needed for unbiased modeling of feature cosmic variance.

8.1.4 Weak Lensing systematics

In Chapter 7 we confirmed that a large survey such as LSST has the statistical power to

constrain the Dark Energy equation of state w0 to a percent level and hence has the po-

tential to answer the long standing question whether w0 is equal or not to −1. With this

increased precision in measurements, though, stricter requirements on the accuracy of WL

forward models must be enforced in order to avoid bias in parameter constraints. We stud-

ied different contamination sources to the WL signal and evaluated their effects on ΛCDM

constraints. We found that, although CCD imperfections such as the tree ring effect and

the variation of pixel sizes are a completely negligible effect, the same is not true for at-

mospheric spurious shear contaminations and photometric redshift errors. We found that,

if left uncorrected, both of these systematic effects affect higher order κ features and lead

to biases with a significance level bigger than 1σ. As a consequence, in upcoming galaxy

surveys, these systematics must be either mitigated or modeled and marginalized over. We

also concluded that, while the Born approximation is accurate enough to model the κ power

spectrum, full ray–tracing needs to be employed for higher order κ moments.
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8.2 Future prospects

8.2.1 Curse of dimensionality

Accurate detection of structures in feature space is crucial for obtaining better parameter

constraints from WL. With the increased area and resolution of future surveys and with the

advent of WL tomography, the typical dimensionality of the feature space is expected to

increase significantly compared to previous generation experiments. Along with the pos-

sibility of tighter confidence intervals, this brings along a series of numerical challenges

involved with high dimensionality, the most serious of which involves the estimation of

feature covariance matrices. A possible solution to the constraint degradation described in

§ 5.2 is to reduce the dimensionality of the feature space while preserving the cosmological

information contained in it. Although PCA offers a possibility in this sense, this is not the

only way to go. Projections onto feature sub–spaces defined by orthonormal vectors (such

as PCA) are not the most general. Non orthonormal projectors might be explored in the fu-

ture as means of obtaining tighter constraints on ΛCDM. Moreover, physical insight in the

Standard Model of cosmology could lead to scale invariant techniques for dimensionality

reduction, thus removing the arbitrarity associated with feature whitening procedures. An-

other intriguing direction of investigation is to consider non linear techniques such as Lo-

cally Linear Embedding [46]. Although promising, these techniques require much bigger

simulated datasets in order to be trained. Better estimators of the feature covariance matrix,

which do not suffer from the numerical issues illustrated in § 5.2, can also be employed.

Shrinkage [77] is one of such techniques, in which the specification of a theory–motivated

target covariance leads to an estimator that, although slightly biased, degrades less severely

with Nd.
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8.2.2 Weak Lensing of the CMB

Background source galaxies are not only tracers of the WL effect: an intriguing possibil-

ity for an independent observable is the CMB [78]. Background photons that originate

from the surface of last scattering situated at z∗ ≈ 1100 undergo lensing from Large Scale

Structure as well. The primary CMB temperature anisotropy profile T (θθθ) is lensed by LSS,

which yields a modified profile Tlensed(θθθ). Lensing does not change the surface bright-

ness of the sources, but only alters their shapes (see equation (2.2.4)). This consideration,

applied to the CMB temperature profile, translates to

Tlensed(θθθ) = T (θθθ +∇ψlens(θθθ)), (8.2.1)

where the lensing potential ψlens is related to κ via the Poisson equation ∇2ψlens = −2κ.

Since the non–lensed CMB temperature T is a Gaussian field, spatial correlations that

probe non–Gaussianities in Tlensed can be used to estimate κ [78, 79]. The same methods

described in this work can then be used to extract features from the CMB–estimated κ

and to infer ΛCDM parameters. CMB lensing provides a powerful probe for the Standard

Model of cosmology when combined with galaxy lensing, because the systematic effects

involved in the reconstruction of κ are independent in the two cases. [80] for example

proposed a method for cross–correlating galaxy and CMB lensing observations in order to

mitigate intrinsic alignment effects. Our LensTools pipeline can be adapted to study

higher order image features and non–Gaussianities in CMB–reconstructed κ images (see

[81] for a first application). Future prospects in this field include the study of the perfor-

mance of the Born approximation in constructing CMB κ maps, both in feature accuracy

[82, 83] and parameter constraints. Combination of galaxy and CMB lensing observations
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have the potential of significantly improving constraints on the Dark Energy equation of

state and on the neutrino masses.
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Appendix

Simulation sets used in this work

Table A.1 lists the WL simulation suites used in this work. The IGS1 simulations have

been generated with code written by Jan M. Kratochvil. CFHTxxx simulations have been

generated by this research group with the ray–tracing code of Dr. Kratochvil. The re-

maining simulation sets have been generated with LensTools . The github links contain

information about the simulation products. To retrieve such products the reader can email

me at ap3020@columbia.edu.

Name NM Lb, N
1/3
p Chapters Publications Link

IGS1 9 240 Mpc/h,512 4,7 [31, 20, 32] –
CFHTemu1 91 240 Mpc/h,512 6 [54, 55] –
CFHTcov 1 240 Mpc/h,512 6 [54, 55] –

CovarianceBatch 7 240 Mpc/h,512 5 [25] github
LSST100Parameters 100 260 Mpc/h,512 5,7 [47] github

DEBatch 7 260 Mpc/h,512 4,7 [66] github

Table A.1: Simulation sets used in this work
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